Tag Archives: 6v geared motor

China Good quality 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed vacuum pump brakes

Product Description

I. CH MOTOR – DC Gear Motor D122A2(12MM) – Central Axis

Product Description

1. Typical Applications:

Electronic lock
Optic equipment
Micro mechanism

2. Specifications:

-Voltage: 3-12V
-Speed: 30-3 2.4 450 70 3 3.0 70 60 55 0.17 200 100 1.2 600 D122-57100 3.0 25 40 25 0.2 80 50 2 300

 

Company Profile

 

PROFESSIONAL MOTOR MANUFACTURER

Founded in 2006, I.CH is a professional Micro Metal Gear Motor factory over 16years. We have worked with over 50 countries’ customers arround world. We have over 20 patents in gearbox field.

We focus on the development of planetary gearbox and matched different type of motors, such as DC brush motor, Brushless DC Motor, Stepper Motor and Servo Motor. Custom Service for micro gear motor with encoder and dual shaft in special specification, The light weight with high torque and low speed is widely used in a variety of industrial, home application and hobby appliance.

16+

Experience

50+

Countrie’s Customers

                          20+

                                         Patents

                          1000+

                                      Factory Area

 

Certifications

 

Factory Equipments

 

Work Flow:

 

Customer Visiting

 

 

Packaging & Shipping

 

 

Related Products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Automation Equipment, Household Appliances
Operating Speed: Low Speed
Power Source: DC Motor
Samples:
US$ 6/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

How do DC motors compare to AC motors in terms of performance and efficiency?

When comparing DC (Direct Current) motors and AC (Alternating Current) motors, several factors come into play, including performance and efficiency. Here’s a detailed explanation of how DC motors and AC motors compare in terms of performance and efficiency:

1. Performance:

Speed Control: DC motors typically offer better speed control compared to AC motors. DC motors can be easily controlled by varying the voltage applied to the armature, allowing for precise and smooth speed regulation. On the other hand, AC motors rely on complex control methods such as variable frequency drives (VFDs) to achieve speed control, which can be more challenging and costly.

Starting Torque: DC motors generally provide higher starting torque compared to AC motors. The presence of a separate field winding in DC motors allows for independent control of the field current, enabling higher torque during motor startup. AC motors, especially induction motors, typically have lower starting torque, requiring additional starting mechanisms or devices.

Reversibility: DC motors offer inherent reversibility, meaning they can easily change their rotational direction by reversing the polarity of the applied voltage. AC motors, particularly induction motors, require more complex control mechanisms to achieve reversible operation.

Dynamic Response: DC motors have faster dynamic response characteristics compared to AC motors. They can quickly accelerate or decelerate, making them suitable for applications that require rapid changes in speed or precise control, such as robotics or servo systems.

2. Efficiency:

Full Load Efficiency: AC motors, especially three-phase induction motors, generally exhibit higher full load efficiencies compared to DC motors. This efficiency advantage is primarily due to the absence of commutation and the use of a rotating magnetic field in AC motors, which results in reduced energy losses and improved efficiency.

Partial Load Efficiency: DC motors can have higher efficiency at partial loads compared to AC motors. DC motors can be controlled by adjusting the armature voltage, allowing them to operate at reduced power while maintaining relatively high efficiency. AC motors, especially induction motors, may experience reduced efficiency at partial loads due to factors such as increased iron losses and reduced power factor.

Regenerative Braking: DC motors offer the advantage of regenerative braking, where the motor acts as a generator and converts kinetic energy into electrical energy during deceleration or braking. This regenerative braking capability allows for energy recovery, increasing overall system efficiency. AC motors typically require additional components or systems to achieve regenerative braking.

Power Factor: AC motors, when properly designed and operated, can have a power factor close to unity. This means that they draw relatively low reactive power from the electrical grid, resulting in improved power system efficiency. DC motors, on the other hand, may exhibit a lower power factor and require power factor correction measures if necessary.

In summary, DC motors and AC motors have their respective strengths and weaknesses in terms of performance and efficiency. DC motors excel in speed control, starting torque, reversibility, and dynamic response. AC motors, particularly three-phase induction motors, generally offer higher full load efficiency and power factor. However, DC motors can achieve higher efficiency at partial loads and have the advantage of regenerative braking. The choice between DC motors and AC motors depends on the specific application requirements, cost considerations, and the desired balance between performance and efficiency.

dc motor

Where can individuals find reliable resources for learning more about DC motors and their applications?

Individuals seeking reliable resources to learn more about DC (Direct Current) motors and their applications can explore various sources that provide comprehensive and accurate information. Here’s a detailed explanation of where individuals can find reliable resources for learning about DC motors:

1. Manufacturer Websites:

Many DC motor manufacturers have dedicated sections on their websites that provide detailed information about their products, including specifications, application notes, technical guides, and whitepapers. These resources offer valuable insights into the design, operation, and application considerations of DC motors. Examples of reputable DC motor manufacturers include Baldor, Maxon Motor, and Faulhaber.

2. Industry Associations and Organizations:

Industry associations and organizations related to electrical engineering, automation, and motor technology can be excellent sources of reliable information. Examples include the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). These associations often provide access to technical publications, research papers, conferences, and educational resources related to DC motors and their applications.

3. Technical Books and Publications:

Technical books and publications authored by experts in the field of electrical engineering and motor technology can provide in-depth knowledge about DC motors. Books such as “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and “Practical Electric Motor Handbook” by Irving Gottlieb are widely regarded as reliable resources for learning about DC motors and their applications.

4. Online Educational Platforms:

Online educational platforms offer a wealth of resources for learning about DC motors. Websites like Coursera, Udemy, and Khan Academy provide online courses, tutorials, and video lectures on electrical engineering, motor theory, and applications. These platforms often have courses specifically dedicated to DC motors, covering topics such as motor principles, control techniques, and practical applications.

5. Research Papers and Scientific Journals:

Research papers published in scientific journals and conference proceedings can provide detailed insights into the latest advancements and research findings related to DC motors. Platforms like IEEE Xplore, ScienceDirect, and Google Scholar can be used to search for scholarly articles on DC motors. These papers are authored by researchers and experts in the field and provide reliable and up-to-date information on various aspects of DC motor technology.

6. Online Forums and Communities:

Online forums and communities focused on electrical engineering, motor technology, and DIY projects can be valuable resources for learning about DC motors. Platforms like Reddit, Stack Exchange (Electrical Engineering section), and specialized motor forums provide opportunities to ask questions, engage in discussions, and learn from experienced individuals in the field. However, it’s important to verify information obtained from online forums as they may contain a mix of opinions and varying levels of expertise.

When accessing these resources, it’s essential to critically evaluate the information and cross-reference it with multiple sources to ensure accuracy and reliability. By utilizing a combination of manufacturer websites, industry associations, technical books, online educational platforms, research papers, and online communities, individuals can gain a comprehensive understanding of DC motors and their applications.

China Good quality 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed   vacuum pump brakesChina Good quality 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed   vacuum pump brakes
editor by CX 2024-04-04

China Best Sales 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed vacuum pump ac

Product Description

I. CH MOTOR – DC Gear Motor D122A2(12MM) – Central Axis

Product Description

1. Typical Applications:

Electronic lock
Optic equipment
Micro mechanism

2. Specifications:

-Voltage: 3-12V
-Speed: 30-3 2.4 450 70 3 3.0 70 60 55 0.17 200 100 1.2 600 D122-57100 3.0 25 40 25 0.2 80 50 2 300

 

Company Profile

 

PROFESSIONAL MOTOR MANUFACTURER

Founded in 2006, I.CH is a professional Micro Metal Gear Motor factory over 16years. We have worked with over 50 countries’ customers arround world. We have over 20 patents in   gearbox  field.

We focus on the development of   planetary gearbox  and matched different type of motors, such as   DC brush motor,   Brushless DC Motor,   Stepper Motor  and Servo Motor. Custom Service for micro gear motor with encoder and dual shaft in special specification, The light weight with high torque and low speed is widely used in a variety of industrial, home application and hobby appliance.

16 +

Experience

50 +

Countrie’s Customers

                          20 +

                                         Patents

                          1000 +

                                      Factory Area

 

Certifications

 

Factory Equipments

 

Work Flow:

 

Customer Visiting

 

 

Packaging & Shipping

 

 

Related Products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Automation Equipment, Household Appliances
Operating Speed: Low Speed
Power Source: DC Motor
Samples:
US$ 6/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

What is the significance of back EMF (electromotive force) in DC motor performance?

The significance of back EMF (electromotive force) in DC motor performance is crucial to understanding the behavior and operation of DC motors. Back EMF is an inherent characteristic of DC motors and plays a pivotal role in their efficiency, speed regulation, and overall performance. Here’s a detailed explanation of the significance of back EMF in DC motor performance:

When a DC motor operates, it generates a voltage known as back EMF or counter electromotive force. This voltage opposes the applied voltage and is caused by the rotation of the motor’s armature within the magnetic field. The back EMF is directly proportional to the rotational speed of the motor.

The significance of back EMF can be understood through the following aspects:

1. Speed Regulation:

Back EMF is crucial for regulating the speed of a DC motor. As the motor rotates faster, the back EMF increases, which reduces the effective voltage across the motor’s armature. Consequently, the armature current decreases, limiting the motor’s speed. This self-regulating characteristic helps maintain a relatively constant speed under varying load conditions. It allows the motor to deliver the required torque while preventing excessive speed that can potentially damage the motor or the driven equipment.

2. Efficiency:

Back EMF plays a significant role in the efficiency of a DC motor. When the motor is loaded and drawing current, the power supplied to the motor is the product of the armature current and the applied voltage. However, the electrical power converted into mechanical power is reduced by the power consumed by the back EMF. The back EMF represents the energy returned to the power supply as the motor generates its own voltage. By reducing the effective voltage across the motor, it helps minimize power losses due to electrical resistance and improves the overall efficiency of the motor.

3. Motor Protection:

The presence of back EMF also provides a level of protection to the motor. When a DC motor is operating and the load on the motor suddenly decreases, such as when the driven equipment is disconnected, the motor’s speed can increase rapidly. This increase in speed leads to a higher back EMF, which reduces the armature current and prevents excessive current flow. By limiting the current, the back EMF helps protect the motor from overloading and potential damage.

4. Voltage Regulation:

Back EMF affects the voltage regulation in a DC motor. When the motor is operating, the back EMF opposes the applied voltage. As the motor load increases, the voltage drop across the armature resistance and other internal losses also increase. The back EMF helps compensate for these voltage drops, ensuring that the motor receives an adequate voltage to maintain its performance and torque output.

5. Control and Dynamic Response:

Back EMF provides valuable information for motor control and dynamic response. By measuring the back EMF voltage, the rotational speed of the motor can be estimated, allowing for precise speed control and feedback. This information is crucial for applications that require accurate speed regulation, such as robotics or industrial automation.

In summary, the significance of back EMF in DC motor performance cannot be overstated. It influences speed regulation, efficiency, motor protection, voltage regulation, and control capabilities. By understanding and utilizing the inherent characteristics of back EMF, engineers can design and optimize DC motor systems for various applications, ensuring reliable and efficient operation.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China Best Sales 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed   vacuum pump acChina Best Sales 3V 6V 12V Micro Brush DC Geared Gear Motor Reducer Low Speed   vacuum pump ac
editor by CX 2024-03-30

China Best Sales 24mm Diameter 1600rpm Low Noise Long Life High Torque Low Rpm 3V 6V 12V 24V DC Geared Motor 12V for Robot Car Toy vacuum pump design

Product Description

 

 

Product Parameters

Model:  32mm gear motor

  • Rated Voltage: 3.0V
  • No Load Speed: 98 rpm
  • No Load Current: 80mA
  • Rated Load Speed: 86 rpm
  • Rated Load Current: 220mA
  • Rated Load Torque: 106 gf.cm
  • Rated Torque of Gear Box: 2,000 gf.cm
  • Instant Torque of Gear Box: 6,000 gf.cm
  • Overall Length L: 34 mm
  • Gear Box Length L1: 19 mm
Model Application Parameters Rated Torque of Gear Box Instant Torque of Gear Box Gear Ratio Gear Box Length
L1
Rated At No Load At Rated Load Overall Length
L
Voltage Speed Current Speed Current Torque
VDC rpm mA rpm mA gf.cm mN.m mm gf.cm gf.cm mm
ZWBMD571571-46 3.0 375 80 315 215 39 3.8 30.9 2000 6000 46 15.9
ZWBMD571571-69 3.0 250 80 210 215 58 5.7 2000 6000 69
ZWBMD571571-102 3.0 169 80 142 215 86 8.4 2000 6000 102
ZWBMD571571-151 3.0 114 80 96 215 127 12.5 2000 6000 151
ZWBMD571571-168 3.0 98 80 86 220 106 10.4 34 2000 6000 168 19
ZWBMD571571-249 3.0 66 80 58 220 158 15 2000 6000 249
ZWBMD571571-368 3.0 45 80 39 220 233 23 2000 6000 368
ZWBMD571571-546 3.0 30 80 27 220 346 34 2000 6000 546
ZWBMD571571-809 3.0 20 80 18 220 512 50 2000 6000 809

above specifications just for reference and customizable according to requirements.

Please let us know your requirements and we will provide you with micro transmission solutions.

Detailed Photos

 

 

Application

Smart wearable devices   watch,VR,AR,XR and etc.
Household application kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc.
communication equipment 5G base station,video conference,mobile phone and etc.
Office automation equipments   scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine,  screen, lifting socket,  display,notebook PC and etc.
Automotive products  conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc.
Toys and models  radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc.
Medical equipments  blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc.
Industrials   flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc.
Electric power tools  electric drill, screwdriver,garden tool and etc.
Precision instruments  optics instruments,automatic vending machine, wire-stripping machine and etc.
Personal care tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc.
Consumer electronics camera, mobile phone,digital camera, automatic retracting device,camcorder,  kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc.
robots educational robot, programming robot, medical robot, escort robot and etc.

 

Company Profile

HangZhou CHINAMFG Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly. 

Workshop


Testing Equipment

1) Competitive Advantages

  • 1) Competitive Advantages
    19+year experience in manufacturing motor gearbox
    We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
    Competitive Price
    Product Performance: Low noise, High efficiency, Long lifespan
    Prompt Delivery: 15 working days after payment
    Small Orders Accepted

 2) Main Products

  • Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,

  • Customized worm and gear transmission machinery;
  • Precise electromechanical motion module;
  • Precise component and assembly of plastic and metal powder injection.

 

Our Services

  • ODM & OEM
  • Gearbox design and development
  • Related technology support
  • Micro drive gearbox custom solution

Packaging & Shipping

1) Packing Details

packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.

2) Shipping Details

samples will be shipped within 10 days;
batch order leading time according to the actual situation.

 

Certifications

Certifications

We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).

and more…

 

FAQ

FAQ

1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.

2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.

3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.

4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.

5. Do you provide technical support?
YES. Our company have design and development team, we can provide technology support if you
need.

6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide. 

7.How to pay the money?
We accept T/T in advance. Also we have different bank accounts for receiving money, like US dollars or RMB etc.

8. How can I know the product is suitable for me?
Frist, you need to provide us the more detailed information about the product. We will recommend the item to you according to your requirement of the specification. After you confirm, we will prepare the samples for you. also, we will offer some good advances according to your product use.

9. Can I come to your company to visit?
YES, you can come to our company to visit at any time, and welcome to visit our company.

10. How do contact us?
 Please send an inquiry

Application: Universal, Industrial, Household Appliances, Car, Power Tools, CCTV Camera
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Drip-Proof
Number of Poles: 4
Customization:
Available

|

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

What role does commutation play in the operation of a DC motor?

In the operation of a DC (Direct Current) motor, commutation plays a crucial role in ensuring the continuous rotation of the motor and the conversion of electrical energy into mechanical motion. It is the process by which the direction of the current in the armature winding is periodically reversed to maintain a constant torque and facilitate the rotation of the motor. Here’s a detailed explanation of the role of commutation in the operation of a DC motor:

Commutation is necessary in a DC motor because the magnetic field generated by the armature winding needs to be constantly aligned with the stator’s magnetic field for efficient torque production. The stator of a DC motor typically consists of permanent magnets or electromagnets that create a fixed magnetic field. The armature winding, located on the rotor, produces a magnetic field that interacts with the stator’s field to generate torque.

The commutation process is achieved through the use of a commutator and brushes. The commutator is a cylindrical ring with multiple segments, while the brushes are conductive contacts that make physical contact with the commutator segments. The armature winding is connected to the commutator, and as the rotor spins, the brushes maintain contact with different segments.

As the rotor rotates, the commutator and brushes ensure that the direction of the current in the armature winding is reversed at specific intervals. This reversal of current flow is necessary to maintain a consistent torque in the same rotational direction. Without commutation, the torque generated by the motor would fluctuate in both magnitude and direction, leading to instability and erratic motor behavior.

The commutation process involves two stages: mechanical commutation and electrical commutation.

1. Mechanical Commutation: As the rotor rotates, the brushes make contact with different segments of the commutator. The segments are insulated from each other to prevent short circuits. When the brushes move from one segment to another, the current flowing through the armature winding is switched to a different coil or set of coils. This mechanical switching ensures that the magnetic fields produced by the winding are properly aligned with the stator’s field, resulting in continuous torque production.

2. Electrical Commutation: The reversal of current in the armature winding is achieved through electrical commutation. When the brushes make contact with a new commutator segment, the current flow in the winding is redirected to maintain the desired torque direction. The timing and sequence of the current reversal are critical to ensure smooth and efficient motor operation.

The commutation process in a DC motor is a dynamic and continuous operation. It allows for the conversion of electrical energy into mechanical motion by providing a consistent torque output. The efficiency and performance of the motor are greatly influenced by the quality and effectiveness of the commutation process.

In summary, commutation plays a vital role in the operation of a DC motor by ensuring the continuous rotation of the motor and the production of consistent torque. It involves the mechanical and electrical switching of the current direction in the armature winding, facilitated by the commutator and brushes.

dc motor

How does the size and power rating of a DC motor affect its suitability for different tasks?

The size and power rating of a DC (Direct Current) motor play crucial roles in determining its suitability for different tasks and applications. The size and power rating directly impact the motor’s performance characteristics, including its torque output, speed range, efficiency, and overall capabilities. Here’s a detailed explanation of how the size and power rating of a DC motor affect its suitability for different tasks:

Size of DC Motor:

The size of a DC motor refers to its physical dimensions, including its diameter, length, and overall volume. The size of the motor influences its ability to fit into specific spaces or applications with space constraints. Here are some key considerations regarding the size of a DC motor:

1. Space Limitations: In applications where space is limited, such as small robotic systems or compact machinery, smaller-sized DC motors are preferred. These motors provide a more convenient and efficient integration into the overall system design.

2. Weight Constraints: Certain applications, such as drones or lightweight robots, may have strict weight limitations. Smaller-sized DC motors are generally lighter, making them more suitable for weight-sensitive tasks where minimizing the overall system weight is essential.

3. Cooling and Heat Dissipation: The size of a DC motor can impact its ability to dissipate heat generated during operation. Smaller-sized motors may have less surface area for heat dissipation, which can lead to increased operating temperatures. In contrast, larger-sized motors typically have better heat dissipation capabilities, allowing for sustained operation under heavy loads or in high-temperature environments.

Power Rating of DC Motor:

The power rating of a DC motor refers to the maximum power it can deliver or the power it consumes during operation. The power rating determines the motor’s capacity to perform work and influences its performance characteristics. Here are some key considerations regarding the power rating of a DC motor:

1. Torque Output: The power rating of a DC motor is directly related to its torque output. Higher power-rated motors generally provide higher torque, allowing them to handle more demanding tasks or applications that require greater force or load capacity. For example, heavy-duty industrial machinery or electric vehicles often require DC motors with higher power ratings to generate sufficient torque for their intended tasks.

2. Speed Range: The power rating of a DC motor affects its speed range capabilities. Motors with higher power ratings can typically achieve higher speeds, making them suitable for applications that require rapid or high-speed operation. On the other hand, lower power-rated motors may have limited speed ranges, making them more suitable for applications that require slower or controlled movements.

3. Efficiency: The power rating of a DC motor can impact its efficiency. Higher power-rated motors tend to have better efficiency, meaning they can convert a larger proportion of electrical input power into mechanical output power. Increased efficiency is desirable in applications where energy efficiency or battery life is a critical factor, such as electric vehicles or portable devices.

4. Overload Capability: The power rating of a DC motor determines its ability to handle overloads or sudden changes in load conditions. Motors with higher power ratings generally have a greater overload capacity, allowing them to handle temporary load spikes without stalling or overheating. This characteristic is crucial in applications where intermittent or varying loads are common.

Overall, the size and power rating of a DC motor are important factors in determining its suitability for different tasks. Smaller-sized motors are advantageous in space-constrained or weight-sensitive applications, while larger-sized motors offer better heat dissipation and can handle heavier loads. Higher power-rated motors provide greater torque, speed range, efficiency, and overload capability, making them suitable for more demanding tasks. It is crucial to carefully consider the specific requirements of the application and choose a DC motor size and power rating that aligns with those requirements to ensure optimal performance and reliability.

China Best Sales 24mm Diameter 1600rpm Low Noise Long Life High Torque Low Rpm 3V 6V 12V 24V DC Geared Motor 12V for Robot Car Toy   vacuum pump design		China Best Sales 24mm Diameter 1600rpm Low Noise Long Life High Torque Low Rpm 3V 6V 12V 24V DC Geared Motor 12V for Robot Car Toy   vacuum pump design
editor by CX 2023-11-27

in Srinagar India sales price shop near me near me shop factory supplier 25mm 6V 12V High Torque DC Geared Motor with Planetary Gearbox for Blenders manufacturer best Cost Custom Cheap wholesaler

  in Srinagar India  sales   price   shop   near me   near me shop   factory   supplier 25mm 6V 12V High Torque DC Geared Motor with Planetary Gearbox for Blenders manufacturer   best   Cost   Custom   Cheap   wholesaler

We also can design and make non-normal products to satisfy customers’ particular specifications. Entire use has been made of all types of advanced methods and engineering to get to excelsior manufacturing. We can supply a complete-assortment of power transmission merchandise like chains, sprockets and plate wheels, pulleys, gearboxes, motors, couplings, gears and racks. Be aware:

The specs can be designed according to the customer’s needs!

Application:

Electric Drill, ScrewEPTr, Scanners, Printers, Vending EPT, Window Curtain, Coffee EPT, Electric Lock, etc.

Parameter:

Gear Ratio:

Number of levels 3 4 five 6 seven 8
Equipment ratio i nine.seven 16.one 26.9 59.2 one hundred thirty.1 286.3
twelve.5 21.3 35.five seventy eight.1 171.8 377.nine
forty six.nine 103.one 226.8 498.nine
Duration of EPT L (mm) 19. 21. 23. 25. 27.

Specification:

Model VOLTAGE
V
NO LOAD AT MAXiHu (West Lake) Dis.MUM Performance STALL
Pace
rpm
Existing
mA
Speed
rpm
TORQUE
Kg.cm
Recent
mA
OUTPUT
mW
TORQUE
Kg.cm
Current
mA
D252-012078 six. a hundred twenty five a hundred and sixty a hundred one.2 a thousand 1200 seven.five 3000
D252-016103 twelve. eighty five one hundred 65 one.6 400 1100 seven. 1500
D252-032226 twelve. 38 a hundred thirty three.two five hundred 1000 15. 1500
D252-085716 12. 64 200 50 eight. 600 4200 fifteen. 1500
D252-160500 twelve. 30 200 24 sixteen. 550 4500 15. 2000
D252-065500 twelve. seventeen a hundred fourteen 6.five 500 a thousand fifteen. 1500

About Us:

We EPTized in investigating, deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ing, and servicing electric motors, EPT, and high precision EPTs with the tiny module. Right after many years of deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment, we have an independent solution design and R ampD crew, provider group, and a skilled high quality management staff. To realize our service principle greater, give substantial-top quality goods and superb support, we have been committed to the core capacity and instruction. We have a EPT manufacturing unit in NanEPTg, which makes higher precision tiny mildew ears, EPT shaft, EPT, and planetary EPT assembling.

Function-circulation:

Certificate:
RoHS, CE, and more…

Support:

ODM amp OEM
EPT design and deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment

Bundle ampShip:

Carton, pallet, or what you want
The supply time is about 30-forty five days.

FAQ:

one. Can you custom EPT?
Sure.

2. DO you give the sample?
Yes.

3. Do you offer specialized support?
Sure

four. Do you have a manufacturing unit?
Sure, we are a expert producer.

5. Can I appear to your company to pay a visit to?
Of course

  in Srinagar India  sales   price   shop   near me   near me shop   factory   supplier 25mm 6V 12V High Torque DC Geared Motor with Planetary Gearbox for Blenders manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Srinagar India  sales   price   shop   near me   near me shop   factory   supplier 25mm 6V 12V High Torque DC Geared Motor with Planetary Gearbox for Blenders manufacturer   best   Cost   Custom   Cheap   wholesaler