Tag Archives: electric drive motor

China factory 10 Inch 1500W All-in-One Brushless DC Direct Drive Electric Motorcycle Scooter Hub Motor Black Double IP67 Scooter vacuum pump belt

Product Description

Used in scooter and motorcycle with high power
giving excellent balance capacity,comfortable,smooth and durable in use.

 

 Working voltage DC48V-72V
 No load speed 490±10rpm
 Rated power 1500-2500W
 Efficiency ≥85%
 Maximum torque >72Nm
 Maximum speed 35km/h-50km/h
 Motor on gear 170mm
Brake type  Drum/Disc brake
 Colour  Matt black/silver
 Adaptive tire English 3.0-10 3.5-10
  Metric 110 / 100-10 110 / 90-10
              90/90-10   100/90-10

1. Q: Can I get samples before my formal order?
A: Yes, special sample services are available. And the sample cost can be relived once the formal order comes.

2. Q: How do you control the quality?
A: 1. Provide sample test report confirmation; 2. Seal sample confirmation. 3. Shoot production videos during the production process; 4. Send out test reports and test videos when the products are off-line; 5. Use foam cartons and woven bags for packaging, and the perfect packaging method ensures that the products are not damaged during transportation.

3. Q: Can I get a customize service?
A: Yes, ODM OEM services are available. (Appearance color, decal, power, etc. can be customized if the quantity can be above 50sets)

4. Q: What is the warranty time of your products?
A:The motor and controller are guaranteed for 18 months.

5. Q: How about payment terms and price terms?
A: Payment Terms: EXW,FOB,CNF/CFR,CIF,L/C, etc. Price Terms: Sample list 100%;Regular order 100% TT or 100% L/C or 30%TT,70%L/C.The specific payment method can be negotiated.

6. Q: What’s the approximate lead time?
A: After the advanced payment confirmed, normally 5 days for stock products,15 days for conventional models , and 30 days for special models. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Charge
Warranty: 12 Mouths
Brake System: Drum Brake/Disc Brake
Speed: 40-60km/H
Supply Voltage: DC48V
Rated Power: 1500-2500W
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

What are the key differences between brushed and brushless DC motors?

Brushed and brushless DC motors are two distinct types of motors that differ in their construction, operation, and performance characteristics. Here’s a detailed explanation of the key differences between brushed and brushless DC motors:

1. Construction:

Brushed DC Motors: Brushed DC motors have a relatively simple construction. They consist of a rotor with armature windings and a commutator, and a stator with permanent magnets or electromagnets. The commutator and brushes make physical contact to provide electrical connections to the armature windings.

Brushless DC Motors: Brushless DC motors have a more complex construction. They typically consist of a stationary stator with permanent magnets or electromagnets and a rotor with multiple coils or windings. The rotor does not have a commutator or brushes.

2. Commutation:

Brushed DC Motors: In brushed DC motors, the commutator and brushes are responsible for the commutation process. The brushes make contact with different segments of the commutator, reversing the direction of the current through the armature windings as the rotor rotates. This switching of the current direction generates the necessary torque for motor rotation.

Brushless DC Motors: Brushless DC motors use electronic commutation instead of mechanical commutation. The commutation process is managed by an external electronic controller or driver. The controller determines the timing and sequence of energizing the stator windings based on the rotor position, allowing for precise control of motor operation.

3. Efficiency:

Brushed DC Motors: Brushed DC motors tend to have lower efficiency compared to brushless DC motors. This is primarily due to the energy losses associated with the brushes and commutation process. The friction and wear between the brushes and commutator result in additional power dissipation and reduce overall motor efficiency.

Brushless DC Motors: Brushless DC motors are known for their higher efficiency. Since they eliminate the use of brushes and commutators, there are fewer energy losses and lower frictional losses. The electronic commutation system allows for precise control of the motor’s operation, maximizing efficiency and reducing power consumption.

4. Maintenance:

Brushed DC Motors: Brushed DC motors require regular maintenance due to the wear and tear of the brushes and commutator. The brushes need periodic replacement, and the commutator requires cleaning to maintain proper electrical contact. The maintenance requirements contribute to additional costs and downtime for brushed DC motors.

Brushless DC Motors: Brushless DC motors have a relatively maintenance-free operation. As they do not have brushes or commutators, there is no need for brush replacement or commutator cleaning. This results in reduced maintenance costs and increased reliability of brushless DC motors.

5. Speed Control:

Brushed DC Motors: Brushed DC motors offer simpler speed control options. The speed can be controlled by adjusting the applied voltage or by varying the resistance in the armature circuit. This allows for relatively straightforward speed regulation.

Brushless DC Motors: Brushless DC motors provide more advanced and precise speed control capabilities. The speed can be controlled through the electronic commutation system by adjusting the timing and sequence of the stator windings’ energization. This allows for precise control of the motor’s speed and acceleration.

These key differences between brushed and brushless DC motors make each type suitable for different applications depending on factors such as efficiency requirements, maintenance considerations, and control complexity.

dc motor

Are there specific types of DC motors designed for different industries or applications?

Yes, there are specific types of DC (Direct Current) motors that are designed and optimized for various industries and applications. DC motors offer a wide range of performance characteristics, allowing them to be tailored to specific requirements. Here’s a detailed explanation of the types of DC motors designed for different industries or applications:

1. Brushed DC Motors:

Brushed DC motors are commonly used in applications that require simple and cost-effective motor solutions. They are suitable for applications with lower efficiency requirements and where maintenance considerations are manageable. Some common industries and applications that use brushed DC motors include:

  • Automotive: Power window mechanisms, windshield wipers, cooling fans, and seat adjustment systems.
  • Consumer Electronics: Household appliances, toys, power tools, and personal care devices.
  • Industrial Machinery: Conveyors, pumps, fans, and machine tools.

2. Brushless DC Motors:

Brushless DC motors are known for their higher efficiency, greater reliability, and precise control capabilities. They are widely used in industries and applications that demand higher performance and advanced control features. Some specific industries and applications that utilize brushless DC motors include:

  • Automotive: Electric power steering systems, electric vehicles, hybrid vehicles, and HVAC systems.
  • Aerospace and Defense: Actuators, robotics, unmanned aerial vehicles (UAVs), and missile systems.
  • Medical and Laboratory Equipment: Centrifuges, pumps, robotics, and diagnostic devices.
  • Industrial Automation: CNC machines, robotics, automated guided vehicles (AGVs), and precision motion control systems.
  • Renewable Energy: Wind turbine generators, solar tracking systems, and energy storage systems.

3. High-Torque DC Motors:

High-torque DC motors are designed to provide substantial torque output at low speeds. They are commonly used in applications that require heavy lifting or high starting torque. Industries and applications that often utilize high-torque DC motors include:

  • Material Handling: Cranes, hoists, winches, lifts, and elevators.
  • Construction and Mining: Excavators, bulldozers, drilling rigs, and conveyor systems.
  • Automotive: Electric vehicles, electric powertrains, and traction control systems.
  • Marine and Shipbuilding: Thrusters, winches, and anchor handling systems.

4. Low-Voltage DC Motors:

Low-voltage DC motors are designed to operate at lower voltages, typically below 24 volts. They are commonly used in battery-powered applications and systems where safety or specific voltage requirements exist. Some industries and applications that utilize low-voltage DC motors include:

  • Automotive: Automotive accessories, window actuators, and door locks.
  • Robotics and Hobbyist Projects: DIY robots, RC vehicles, and model trains.
  • Solar Power Systems: Solar tracking systems, solar panel actuators, and solar-powered water pumps.
  • Home Automation: Automated blinds, curtains, and smart home devices.

These are just a few examples of the types of DC motors designed for different industries and applications. The versatility and adaptability of DC motors make them suitable for a wide range of uses, and manufacturers often offer customized motor solutions to meet specific requirements.

dc motor

Can DC motors be used in robotics, and if so, what are some notable applications?

Yes, DC (Direct Current) motors can be used in robotics, and they are widely employed in various robotic applications. DC motors offer several advantages that make them suitable for robotic systems, including their controllability, compact size, and versatility. Here’s a detailed explanation of how DC motors are used in robotics and some notable applications:

DC Motors in Robotics:

DC motors are commonly used in robotics due to their ability to provide precise speed control and torque output. They can be easily controlled by adjusting the voltage applied to the motor, allowing for accurate and responsive motion control in robotic systems. Additionally, DC motors can be designed in compact sizes, making them suitable for applications with limited space and weight constraints.

There are two main types of DC motors used in robotics:

  1. DC Brushed Motors: These motors have a commutator and carbon brushes that provide the electrical connection to the rotating armature. They are relatively simple in design and cost-effective. However, they may require maintenance due to brush wear.
  2. DC Brushless Motors: These motors use electronic commutation instead of brushes, resulting in improved reliability and reduced maintenance requirements. They are often more efficient and offer higher power density compared to brushed motors.

Notable Applications of DC Motors in Robotics:

DC motors find applications in various robotic systems across different industries. Here are some notable examples:

1. Robotic Manipulators: DC motors are commonly used in robotic arms and manipulators to control the movement of joints and end-effectors. They provide precise control over position, speed, and torque, allowing robots to perform tasks such as pick-and-place operations, assembly, and material handling in industrial automation, manufacturing, and logistics.

2. Mobile Robots: DC motors are extensively utilized in mobile robots, including autonomous vehicles, drones, and rovers. They power the wheels or propellers, enabling the robot to navigate and move in different environments. DC motors with high torque output are particularly useful for off-road or rugged terrain applications.

3. Humanoid Robots: DC motors play a critical role in humanoid robots, which aim to replicate human-like movements and capabilities. They are employed in various joints, including those of the head, arms, legs, and hands, allowing humanoid robots to perform complex movements and tasks such as walking, grasping objects, and facial expressions.

4. Robotic Exoskeletons: DC motors are used in robotic exoskeletons, which are wearable devices designed to enhance human strength and mobility. They provide the necessary actuation and power for assisting or augmenting human movements, such as walking, lifting heavy objects, and rehabilitation purposes.

5. Educational Robotics: DC motors are popular in educational robotics platforms and kits, including those used in schools, universities, and hobbyist projects. They provide a cost-effective and accessible way for students and enthusiasts to learn about robotics, programming, and control systems.

6. Precision Robotics: DC motors with high-precision control are employed in applications that require precise positioning and motion control, such as robotic surgery systems, laboratory automation, and 3D printing. The ability of DC motors to achieve accurate and repeatable movements makes them suitable for tasks that demand high levels of precision.

These are just a few examples of how DC motors are used in robotics. The flexibility, controllability, and compactness of DC motors make them a popular choice in a wide range of robotic applications, contributing to the advancement of automation, exploration, healthcare, and other industries.

China factory 10 Inch 1500W All-in-One Brushless DC Direct Drive Electric Motorcycle Scooter Hub Motor Black Double IP67 Scooter   vacuum pump belt	China factory 10 Inch 1500W All-in-One Brushless DC Direct Drive Electric Motorcycle Scooter Hub Motor Black Double IP67 Scooter   vacuum pump belt
editor by CX 2024-05-07

China ZLTECH single shaft 800w 8inch 48V 200RPM 300kg load electric gearless DC drive wheel hub motor for disinfection robot wholesaler

Warranty: 3months-1year
Model Quantity: ZLLG80ASM800V1.
Use: Robotic, AGV
Variety: SERVO MOTOR
Torque: 40n.m
Building: Long term Magnet
Commutation: Brushless
Safeguard Characteristic: Ip65
Pace(RPM): 200RPM
Ongoing Current(A): 20
Effectiveness: 80%
Tire diameter: 200mm
Amount of poles: 20 polos
Load potential: 300kg/2 wheels
Encoder: 1571 PPR encoder
Tire: Pu tire
Precision: ±1RPM
Max torque: 80N.m
Max current: 40A
Max velocity: 300RPM
Transfer Pace(m/s): 2.1-3.1
Packaging Information: 2pcs per carton, Brushless Motor Robotic Joint Motor for Robotic Arm Weight 17.85kg, Dimension forty one*33*23.five

ZLTECH single shaft 800w 8inch 48V 200RPM 300kg load electric powered gearless DC drive wheel hub motor for disinfection robotic Merchandise Application Parameters & Copper wire with high copper carbon brushes for carbon brush holder spare components and electric slip ring motor Proportions Details Benefit Related Items Environment & Equipment Certifications & DC Motor Carbon Brush Substantial copper carbon brush Support for customization Cooparations Packaging & Shipping

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China ZLTECH single shaft 800w 8inch 48V 200RPM 300kg load electric gearless DC drive wheel hub motor for disinfection robot     wholesaler China ZLTECH single shaft 800w 8inch 48V 200RPM 300kg load electric gearless DC drive wheel hub motor for disinfection robot     wholesaler
editor by czh 2023-02-22

in Johor Bahru Malaysia sales price shop near me near me shop factory supplier Motor-Driven Overhead Crane Drive High Torque Low Rpm Electric AC Motor manufacturer best Cost Custom Cheap wholesaler

  in Johor Bahru Malaysia  sales   price   shop   near me   near me shop   factory   supplier Motor-Driven Overhead Crane Drive High Torque Low Rpm Electric AC Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

We have exported our merchandise to Korea, Turkey, Bulgaria, Romania, Russia, Italy, Norway, the United states, Canada, and so forth. EPG is a skilled maker and exporter that is concerned with the style, development and manufacturing. The group is centered on creating all assortment of standard roller chains and sprockets, gears & gearboxes, this kind of as conveyor chain & sprockets , stainless steel chain, agricultural chain and has not just marketed its merchandise all over china, but also marketed a lot more than sixty five% goods to oversees, such as Europe, The united states, South-east Asia, and it also has set up storage logistics in locations like Europe. Item Description:

AC Motor is a gadget that transforms the electrical power of alternating existing into mechanical power. The AC Motor is mostly composed of an electromagnet winding or stator winding for creating magnetic discipline and a rotating armature or rotor. The motor is manufactured by the phenomenon that the electric powered coil is pressured to rotate in the magnetic subject. AC motors are divided into two types: synchronous alternating recent motor and induction motor.
The stator windings of 3-section AC motors are generally three coils separated by 120 levels, which are connected by triangle or star. When 3-stage recent is applied, a magnetic area is created in each coil, and the a few magnetic fields are combined to type a rotating magnetic subject.
Higher voltage ac motors are designed with the application of modern day EPT resulting in compact EPTs that includes exceptional dynamic homes, meeting the most serious software in regions that incEPT EPT and approach management.
EPTesides offering dependability and substantial efficiency, which will ensure EPT working periods with out necessitating any upkeep, the EPT high voltage ac motors existing outstXiHu (West Lake) Dis.Hu (West Lake) Dis. functioning characteristics, which incEPT:

#8226Wide speed variation assortment
#8226Dimensions as for each GEPT and IEC StXiHu (West Lake) Dis.Hu (West Lake) Dis.rds
#8226High efficiency
#8226Low sound level
#8226High minute of inertia
#8226High capability to dynamic loads
#8226Rugged design
#8226High vibration resistance
#8226Excellent commutation good quality

Item Parameters:

Solution Name Motor-driven Overhead Crane Generate Substantial Torque Minimal Rpm Electric AC Motor
Motor Kind DC Motor,AC Motor,Stepper Motor,Asynchronous Motor ,Synchronous Motor
(Electric EPTry)
Rotational Speed

Reduced Speed/EPT Velocity/Substantial Speed/Variable Speed

Stator Section Variety

3-Section/One-Period

StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd Features #8226NEMA Premium Effectiveness Degree in accordance to NEMA Y
#8226Three-stage, 50, 60 Hz
#8226Voltage: 3000 to 11000 V
#8226Rated output: up to 12500 kw
#8226Number of poles: 2 ,four,6,8,10 or 12poles
#8226Frame sizes: 450 mm to 630mm
#8226Cast aluminium squirrel cage for rotor
#8226Degree of safety: IP23 to IP54(Completely enclosed)
#8226Class insulation F with class (one hundred twenty ordmC) temperature increase
#8226Grease nipples for body 450 to 630MM
#8226Continuous Responsibility (S1)
#8226With thermal defense PTC140 ordmC or PT100
#8226Larger diameter shafts for the greatest overEPT load ratings in the sector
#8226Oversized roller bearings for maXiHu (West Lake) Dis.mum load potential
#8226Other optional functions unEPTrequest
AC Motor AC Motors can operate in higher temperature, flammable and other environments, and do not need to cleanse the dirt of carbon brushes frequently, but it is difficult to handle the speed, since it is necessary to handle the frequency of AC motors (or use induction motors, increase internal resistance, minimize the motor pace at the exact same AC frequency. Speed, manage the voltage will only impact the torque of the motor. The voltage of the EPT civil motor has two kinds, this sort of as 110V and 220V, and there are 380V or 440V in EPT application.
Software AC Motors have larger operating efficiency, no smoke, odor, no pollution to the setting, and significantly less sounds. EPTecause of its series of advantages, it is commonly utilised in EPT and agricultural production, transportation, countrywide protection, commercial and EPT appliances, health care appliances and other fields.
For Example:
#8226Compressor
#8226Rubber mixer
#8226Fans and Pumps
#8226Air brower
#8226Coal mill and rolling mill
#8226Crushers
#8226Conveyor belts
#8226Centrifugal EPTs
#8226Lathe
#8226Hoist

Merchandise Present

  in Johor Bahru Malaysia  sales   price   shop   near me   near me shop   factory   supplier Motor-Driven Overhead Crane Drive High Torque Low Rpm Electric AC Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Johor Bahru Malaysia  sales   price   shop   near me   near me shop   factory   supplier Motor-Driven Overhead Crane Drive High Torque Low Rpm Electric AC Motor manufacturer   best   Cost   Custom   Cheap   wholesaler