Tag Archives: vacuum pump manufacturer

China wholesaler Sells DC Motor End CHINAMFG Manufacturer vacuum pump belt

Product Description

Main products

category range

 

Precision machined products

All kinds of turning processing, combination processing, stamping processing and some other precision processing

Different series of motor end covers such as stepper motors, brushless motors, servo motors, AC motors, and DC motors, and
corresponding series of gearboxes, gears, various shafts, shields, and other precision-processed products

Die Castings

Provide various aluminum, zinc, magnesium alloy die-casting parts, mature products include various types of motor end covers, gear
boxes, radiators, auto parts, medical brackets, lampshades and other die-casting parts

Products are widely used in machinery, aerospace, medical, automation, automobile manufacturing, security and other fields.

Motor components

Our company provides stepping, brushless, servo, AC and DC motors of various series of end covers, insulating rubber rings,
stators and rotors, shafts and other motor components and corresponding series of gearboxes.

Company Profile

HangZhou Xihu (West Lake) Dis.wang Electrical Accessories Co.,Ltd

HangZhou Xihu (West Lake) Dis.wang Motor Parts Co., Ltd. deals with various stepper, servo, brushless and other motor end covers, stator and rotor stamping parts, insulating skeleton, shafts, gear boxes and other accessories, various die-casting parts, and involves various aluminum, Precision processing of copper, iron, zinc, stainless steel and plastic parts; the company is based on several entities such as HangZhou Wangjiasheng Die-Casting Factory, and has a professional team of die-casting, stamping, injection molding, precision processing, etc. The products are not only complete in variety, but also It can be customized according to the requirements of customers, and provide customers with high-quality products accurately and quickly.

Main Products

FAQ

1.Are you a trader or a manufacture?
A: We run an industry &trade integration business.
2.Do you test all your goods before delivery?
A:Yes, we check the whole procession .
3.How long for delivery time after the payment?
A: Usually,we will deliver goods within 48 hours .
4.How can I trace my order during the time?
A: We will send you the tracking number as the goods be sent.
5.What service can you provide if we buy your brand products?
A:we will offer on-line consultation and other small gifts.
6.What will you do if you receive quality complaint?
A:Reply within 24 hours. If it confirms the product has quality problem , we will make corresponding compensation

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Die Casting Machine Type: Hot Chamber Die Casting Machine
Die Casting Method: Precision Die Casting
Application: Electronic Accessories
Machining: Machining Center
Material: Aluminum Alloy
Surface Preparation: Polishing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

In which applications are DC motors commonly used, and what advantages do they offer?

DC (Direct Current) motors are widely used in various applications due to their versatility, controllability, and specific advantages they offer. Here’s a detailed explanation of the common applications of DC motors and the advantages they provide:

1. Robotics:

DC motors are extensively used in robotics for precise control of movement and manipulation. They provide high torque and speed control, allowing robots to perform tasks with accuracy and efficiency. DC motors enable robotic arms, grippers, and mobile robots to execute complex motions and interact with their environment effectively.

2. Industrial Automation:

In industrial automation, DC motors are employed in conveyors, actuators, and positioning systems. The ability to control the motor speed and torque makes them suitable for applications such as material handling, assembly lines, and CNC machines. DC motors offer precise control over acceleration, deceleration, and positioning, enhancing overall productivity and efficiency in manufacturing processes.

3. Electric Vehicles:

DC motors have been widely used in electric vehicles (EVs) for many years. They are commonly found in electric cars, motorcycles, and scooters. DC motors provide high torque from standstill, enabling efficient acceleration and smooth operation. They also offer regenerative braking capabilities, which help in energy recovery during deceleration, thereby increasing the vehicle’s overall efficiency.

4. Appliances:

DC motors are utilized in various household appliances, including fans, blenders, vacuum cleaners, and refrigerators. Their controllable speed and torque allow for efficient operation and improved energy consumption. In appliances where variable speed control is required, such as ceiling fans or blender settings, DC motors offer precise adjustment options to meet different user preferences.

5. Renewable Energy Systems:

DC motors play a crucial role in renewable energy systems, such as wind turbines and solar tracking systems. They convert the rotational energy from wind or sunlight into electrical energy. DC motors enable precise tracking of the sun’s movement for optimal solar energy collection and efficient conversion of wind energy into electricity.

6. Advantages of DC Motors:

DC motors offer several advantages that make them suitable for various applications:

  • Precise Speed Control: DC motors provide accurate and adjustable speed control, allowing for precise regulation of motor output.
  • High Starting Torque: DC motors deliver high torque at startup, making them suitable for applications requiring quick acceleration or heavy loads.
  • Controllability: DC motors can be easily controlled using voltage regulation, current limiting, and feedback control techniques.
  • Efficiency: DC motors have high efficiency, especially when operating at lower speeds.
  • Reliability: DC motors are known for their robustness and reliability, requiring minimal maintenance.
  • Compact Size: DC motors are available in various sizes and can be designed compactly, making them suitable for applications with space constraints.

These advantages make DC motors an attractive choice in various industries and applications where precise control, high starting torque, and reliability are essential.

dc motor

How do DC motors compare to AC motors in terms of performance and efficiency?

When comparing DC (Direct Current) motors and AC (Alternating Current) motors, several factors come into play, including performance and efficiency. Here’s a detailed explanation of how DC motors and AC motors compare in terms of performance and efficiency:

1. Performance:

Speed Control: DC motors typically offer better speed control compared to AC motors. DC motors can be easily controlled by varying the voltage applied to the armature, allowing for precise and smooth speed regulation. On the other hand, AC motors rely on complex control methods such as variable frequency drives (VFDs) to achieve speed control, which can be more challenging and costly.

Starting Torque: DC motors generally provide higher starting torque compared to AC motors. The presence of a separate field winding in DC motors allows for independent control of the field current, enabling higher torque during motor startup. AC motors, especially induction motors, typically have lower starting torque, requiring additional starting mechanisms or devices.

Reversibility: DC motors offer inherent reversibility, meaning they can easily change their rotational direction by reversing the polarity of the applied voltage. AC motors, particularly induction motors, require more complex control mechanisms to achieve reversible operation.

Dynamic Response: DC motors have faster dynamic response characteristics compared to AC motors. They can quickly accelerate or decelerate, making them suitable for applications that require rapid changes in speed or precise control, such as robotics or servo systems.

2. Efficiency:

Full Load Efficiency: AC motors, especially three-phase induction motors, generally exhibit higher full load efficiencies compared to DC motors. This efficiency advantage is primarily due to the absence of commutation and the use of a rotating magnetic field in AC motors, which results in reduced energy losses and improved efficiency.

Partial Load Efficiency: DC motors can have higher efficiency at partial loads compared to AC motors. DC motors can be controlled by adjusting the armature voltage, allowing them to operate at reduced power while maintaining relatively high efficiency. AC motors, especially induction motors, may experience reduced efficiency at partial loads due to factors such as increased iron losses and reduced power factor.

Regenerative Braking: DC motors offer the advantage of regenerative braking, where the motor acts as a generator and converts kinetic energy into electrical energy during deceleration or braking. This regenerative braking capability allows for energy recovery, increasing overall system efficiency. AC motors typically require additional components or systems to achieve regenerative braking.

Power Factor: AC motors, when properly designed and operated, can have a power factor close to unity. This means that they draw relatively low reactive power from the electrical grid, resulting in improved power system efficiency. DC motors, on the other hand, may exhibit a lower power factor and require power factor correction measures if necessary.

In summary, DC motors and AC motors have their respective strengths and weaknesses in terms of performance and efficiency. DC motors excel in speed control, starting torque, reversibility, and dynamic response. AC motors, particularly three-phase induction motors, generally offer higher full load efficiency and power factor. However, DC motors can achieve higher efficiency at partial loads and have the advantage of regenerative braking. The choice between DC motors and AC motors depends on the specific application requirements, cost considerations, and the desired balance between performance and efficiency.

dc motor

What are the environmental implications of using DC motors, particularly in green technologies?

DC (Direct Current) motors offer several environmental benefits when used in green technologies. Their characteristics and operational advantages contribute to reducing environmental impact compared to other motor types. Here’s a detailed explanation of the environmental implications of using DC motors, particularly in green technologies:

1. Energy Efficiency:

DC motors are known for their high energy efficiency. Compared to AC (Alternating Current) motors, DC motors generally have lower energy losses and can convert a larger proportion of electrical input power into mechanical output power. This increased efficiency results in reduced energy consumption, leading to lower greenhouse gas emissions and decreased reliance on fossil fuels for electricity generation.

2. Renewable Energy Integration:

DC motors are well-suited for integration with renewable energy sources. Many green technologies, such as solar photovoltaic systems and wind turbines, produce DC power. By utilizing DC motors directly in these systems, the need for power conversion from DC to AC can be minimized, reducing energy losses associated with conversion processes. This integration improves the overall system efficiency and contributes to a more sustainable energy infrastructure.

3. Battery-Powered Applications:

DC motors are commonly used in battery-powered applications, such as electric vehicles and portable devices. The efficiency of DC motors ensures optimal utilization of the limited energy stored in batteries, resulting in extended battery life and reduced energy waste. By utilizing DC motors in these applications, the environmental impact of fossil fuel consumption for transportation and energy storage is reduced.

4. Reduced Emissions:

DC motors, especially brushless DC motors, produce fewer emissions compared to internal combustion engines or motors that rely on fossil fuels. By using DC motors in green technologies, such as electric vehicles or electrically powered equipment, the emission of greenhouse gases and air pollutants associated with traditional combustion engines is significantly reduced. This contributes to improved air quality and a reduction in overall carbon footprint.

5. Noise Reduction:

DC motors generally operate with lower noise levels compared to some other motor types. The absence of brushes in brushless DC motors and the smoother operation of DC motor designs contribute to reduced noise emissions. This is particularly beneficial in green technologies like electric vehicles or renewable energy systems, where quieter operation enhances user comfort and minimizes noise pollution in residential or urban areas.

6. Recycling and End-of-Life Considerations:

DC motors, like many electrical devices, can be recycled at the end of their operational life. The materials used in DC motors, such as copper, aluminum, and various magnets, can be recovered and reused, reducing the demand for new raw materials and minimizing waste. Proper recycling and disposal practices ensure that the environmental impact of DC motors is further mitigated.

The use of DC motors in green technologies offers several environmental benefits, including increased energy efficiency, integration with renewable energy sources, reduced emissions, noise reduction, and the potential for recycling and end-of-life considerations. These characteristics make DC motors a favorable choice for sustainable and environmentally conscious applications, contributing to the transition to a greener and more sustainable future.

China wholesaler Sells DC Motor End CHINAMFG Manufacturer   vacuum pump belt	China wholesaler Sells DC Motor End CHINAMFG Manufacturer   vacuum pump belt
editor by CX 2024-05-08

China manufacturer Aerator Electric 1500W 380V 304ss Iron Impeller Aerator Floating Aerator Solar Water Saving for Sale DC Motor vacuum pump distributors

Product Description

Product Description

 

IMPELLER AERATOR / FLOATING BALL AERATOR

   The impeller type aerator is composed of six main parts: motor, reducer, impeller, floating body, support and cover. The water surface is agitated by means of mechanical aeration and by means of motor-driven impeller rotation. The gas-liquid contact area is increased by stirring the gas-liquid model and night-mold. The concentration gradient of oxygen in water is enlarged and the speed of oxygen transfer and diffusion from air to water is increased.
 

MAIN FEATURES

1.High oxygenation rate: 2.6kgs/h.

2.Mechanical seal is available to against oil leak pollution.

3.Built-in protector is available to avoid motor being burnt accidentally.

4.The floating boat produced by us is made of good engineering plastic HDPE. It has great buoyancy and high strength.

5.The impeller is made of New PP. The spoke and vane is shaped with plastic only 1 time.

1.Inside and outside cover of floating ball (loading and unloading water) 

2.Motor hood motor cap (waterproof, sunscreen, sealed) 

3.Gear box reducer (to ensure the normal operation of the machine)  

4.Floating ball (adjusting the level of aerator) 

5.Plastic impeller / spray impeller / hot plating impeller (high strength, long life) 

6.Support rod (screw fastening welding connection to ensure normal operation of machine)
 

Model YL-0.75 YL-1.5 YL-2.2 YL-3
Power 0.75kw(1HP) 1.5kw(2HP) 2.2kw(3HP) 3kw(4HP)
Voltage 220V-440V 220V-440V 220V-440V 380-440V
Frequency 50HZ 50HZ 50HZ 50HZ
Phase 3 Phase 3 Phase 3 Phase 3 Phase
Aeration capacity ≥1.6kg/h ≥2.25kg/h ≥3.4kg/h ≥4.5kg/h
Impeller  PP PP PP PP
Power effciency ≥1.5kg/kw h ≥1.5kg/kw h ≥1.5kg/kw h ≥1.5kg/kw h
Loading water surface 3-5(mu) 4-8(mu) 6-10(mu) 7-12(mu)

Product Parameters

 

MOTOR
All copper coil 
with overload overheat protector to prevent the motor from overload overheat or leakage in the case of automatic power failure

IMPELLER 

Features:
* New Design
*Integrated Impeller
*Can Play Big Splash
* Strong Aeration Ability
*Longer Life

 

 

 

SIMPLE STYLE FLOAT

Features:
* Simple design
* Strong HDPE Float.

SHAFT

Galvanized steel pipe

Detailed Photos

 

Packaging & Shipping

 

Our Service

Pre-sale: After-sale:
1. Can customize quality level to match customer’s target price.
2. Can provide samples first, samples are packaged by wooden box.
3. Can provide any accessories parts on aerator for any quantity.
4. Many different models and different quality level for customer to choose.
5. Warranty: Different warranty for different quality level.
6. Whole Life free technical guidance, follow up after use situation
1. Start production as soon as receiving down payment.
2. Send photos of machine in manufacturing and finished photos to client, for your better learn about the machine’s condition.
3. Delivery machine in time, taking photos during loading, so you can “remote monitoring” 
your goods.
4. Documents and certificate available in time.
5. Manual documents available. Engineer can be sent to client site for installation instruction.

FAQ

Q1. Waht’s your company’s main products?
A: Our company is specialized in many kinds of fish pond aerators,including Paddle wheel aerator,Floating aerator,
Surge aerator, Wave aerator and Jet aerator. Can be working with DC/AC or solar system motor.

Q2. What’s your payment term?
A: 30% T/T in deposit, the rest against on the copy of B/L.

Q3. What’s the MOQ for your production?
A: The MOQ is 10 pcs or depends on your products requirements.

Q4. Is it all right to make customer’s own brand name?
A: OEM is ok.

Q5. Where is your loading port?
A: HangZhou/ZheJiang , China or else port as your request. 
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Fisheries Auxiliary Machinery
Working Method: Friction Type
Power Source: Electric
Certification: CE
Condition: New
Warranty: 1 Year
Customization:
Available

|

dc motor

In which applications are DC motors commonly used, and what advantages do they offer?

DC (Direct Current) motors are widely used in various applications due to their versatility, controllability, and specific advantages they offer. Here’s a detailed explanation of the common applications of DC motors and the advantages they provide:

1. Robotics:

DC motors are extensively used in robotics for precise control of movement and manipulation. They provide high torque and speed control, allowing robots to perform tasks with accuracy and efficiency. DC motors enable robotic arms, grippers, and mobile robots to execute complex motions and interact with their environment effectively.

2. Industrial Automation:

In industrial automation, DC motors are employed in conveyors, actuators, and positioning systems. The ability to control the motor speed and torque makes them suitable for applications such as material handling, assembly lines, and CNC machines. DC motors offer precise control over acceleration, deceleration, and positioning, enhancing overall productivity and efficiency in manufacturing processes.

3. Electric Vehicles:

DC motors have been widely used in electric vehicles (EVs) for many years. They are commonly found in electric cars, motorcycles, and scooters. DC motors provide high torque from standstill, enabling efficient acceleration and smooth operation. They also offer regenerative braking capabilities, which help in energy recovery during deceleration, thereby increasing the vehicle’s overall efficiency.

4. Appliances:

DC motors are utilized in various household appliances, including fans, blenders, vacuum cleaners, and refrigerators. Their controllable speed and torque allow for efficient operation and improved energy consumption. In appliances where variable speed control is required, such as ceiling fans or blender settings, DC motors offer precise adjustment options to meet different user preferences.

5. Renewable Energy Systems:

DC motors play a crucial role in renewable energy systems, such as wind turbines and solar tracking systems. They convert the rotational energy from wind or sunlight into electrical energy. DC motors enable precise tracking of the sun’s movement for optimal solar energy collection and efficient conversion of wind energy into electricity.

6. Advantages of DC Motors:

DC motors offer several advantages that make them suitable for various applications:

  • Precise Speed Control: DC motors provide accurate and adjustable speed control, allowing for precise regulation of motor output.
  • High Starting Torque: DC motors deliver high torque at startup, making them suitable for applications requiring quick acceleration or heavy loads.
  • Controllability: DC motors can be easily controlled using voltage regulation, current limiting, and feedback control techniques.
  • Efficiency: DC motors have high efficiency, especially when operating at lower speeds.
  • Reliability: DC motors are known for their robustness and reliability, requiring minimal maintenance.
  • Compact Size: DC motors are available in various sizes and can be designed compactly, making them suitable for applications with space constraints.

These advantages make DC motors an attractive choice in various industries and applications where precise control, high starting torque, and reliability are essential.

dc motor

Can DC motors be used in renewable energy systems, such as wind turbines or solar tracking systems?

Yes, DC (Direct Current) motors can be effectively used in various renewable energy systems, including wind turbines and solar tracking systems. The unique characteristics and advantages of DC motors make them well-suited for these applications. Here’s a detailed explanation of how DC motors can be utilized in renewable energy systems:

1. Wind Turbines:

DC motors can be employed in wind turbines to convert the mechanical energy of the wind into electrical energy. There are two common configurations:

a. Direct Drive Wind Turbines:

In direct drive wind turbines, the rotor of the turbine is directly connected to a DC generator. The rotor’s rotational motion is transmitted directly to the generator, which produces DC electrical power. DC motors can be used as DC generators in this configuration. The advantage of using DC motors/generators is their simplicity, reliability, and ability to operate efficiently at variable speeds, which is beneficial in varying wind conditions.

b. Hybrid Wind Turbines:

Hybrid wind turbines combine both aerodynamic and electrical conversion systems. In this configuration, DC motors can be utilized for the pitch control mechanism and yaw control system. The pitch control mechanism adjusts the angle of the turbine blades to optimize performance, while the yaw control system enables the turbine to align itself with the wind direction. DC motors provide precise control and responsiveness required for these functions.

2. Solar Tracking Systems:

DC motors are commonly employed in solar tracking systems to maximize the efficiency of solar panels by optimizing their orientation towards the sun. There are two main types of solar tracking systems:

a. Single-Axis Solar Tracking Systems:

Single-axis solar tracking systems adjust the inclination of solar panels along a single axis (typically the east-west axis) to track the movement of the sun throughout the day. DC motors can be used to drive the rotation mechanism that adjusts the panel’s tilt angle. By continuously adjusting the panel’s position to face the sun directly, the solar energy harvested can be significantly increased, resulting in higher energy output compared to fixed solar panel installations.

b. Dual-Axis Solar Tracking Systems:

Dual-axis solar tracking systems adjust the inclination of solar panels along both the east-west and north-south axes to track the sun’s movement throughout the day and throughout the year. DC motors are utilized in the rotation mechanisms for both axes. This type of solar tracking system provides the highest possible energy yield by keeping the solar panels perpendicular to the sun’s rays at all times, maximizing the exposure to sunlight.

DC motors are preferred in renewable energy systems due to their advantages, including:

  • Efficiency at Variable Speeds: DC motors can operate efficiently at varying speeds, making them suitable for applications with fluctuating wind speeds or changing solar angles.
  • Control and Precision: DC motors offer precise control and responsiveness, allowing for accurate tracking and adjustment in wind turbines and solar tracking systems.
  • Reliability: DC motors are known for their reliability, with fewer moving parts compared to other motor types, reducing the risk of failure in remote or harsh environments.
  • Compatibility with Energy Storage Systems: DC motors can easily be integrated with energy storage systems, such as batteries or supercapacitors, to store excess electrical energy generated by wind turbines or solar panels.

In conclusion, DC motors can be effectively utilized in renewable energy systems such as wind turbines and solar tracking systems. Their efficiency, control capabilities, reliability, and compatibility with energy storage systems make them a suitable choice for these applications, contributing to the advancement of sustainable energy generation.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China manufacturer Aerator Electric 1500W 380V 304ss Iron Impeller Aerator Floating Aerator Solar Water Saving for Sale DC Motor   vacuum pump distributorsChina manufacturer Aerator Electric 1500W 380V 304ss Iron Impeller Aerator Floating Aerator Solar Water Saving for Sale DC Motor   vacuum pump distributors
editor by CX 2024-04-26

China manufacturer CHINAMFG K00-01 4nm 120W 100rpm 220V DC Geared Motor vacuum pump design

Product Description

 

Product Description

Detailed Photos

Product Parameters

 

Product Name: DC Geared Motor
Model No. K00-01
Brand: LHangZhou
Application: for dough mixer  
Starting Mode Direct on-line Starting
Rated Voltage: 100-240V
Rated Power: 120W
No-load Speed: rpm
Reduction Ratio: 47:1
Rated Torque: 4N.m
No-load Current: <=0.25A
Output Bearing: Ball Bearing
Rated Speed: 100rpm
Customized: yes
Positive Inversion: yes
Packing: foam&carton,or accroding to customers’ specific requirements
MOQ: 2000 pcs
Delivery Time: Depends on quantity from 2 weeks to 4 weeks.
Payment Term: T/T, L/C, D/P

Application

Company Profile

 

FAQ
1.What’re your main products ?
We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

2. How to select a suitable motor?
If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

3.Do you have a customized service for your standard motors?
Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

4. Do you have an individual design service for motors?
Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

5. Can I have samples for testing first?
Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.

 

6.How do you make sure motor quality?

We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.

 

7.What’s your lead time?

Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

 

Weclome contact with us if have any questions about this motor or other products!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Household Appliances, Power Tools
Operating Speed: Low Speed
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Structure and Working Principle: Brush
Samples:
US$ 8/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

What are the main components of a DC motor, and how do they contribute to its functionality?

A DC (Direct Current) motor consists of several key components that work together to enable its functionality. Each component plays a crucial role in the operation of the motor. Here’s a detailed explanation of the main components of a DC motor and their contributions:

1. Stator:

The stator is the stationary part of the motor. It typically consists of permanent magnets or electromagnets that produce a fixed magnetic field. The stator’s magnetic field interacts with the rotor’s magnetic field to generate the required torque for motor rotation. The stator provides the foundation for the motor’s magnetic field and contributes to its overall stability and efficiency.

2. Rotor:

The rotor is the rotating part of the motor and is connected to the motor’s output shaft. It contains coils or windings that carry the armature current. The rotor’s windings interact with the stator’s magnetic field, resulting in the generation of a mechanical force that causes the rotor to rotate. The rotor’s movement is responsible for converting electrical energy into mechanical motion, enabling the motor to perform its intended function.

3. Armature:

The armature is the core of the rotor that holds the armature windings. The armature windings are typically made of copper wire and are evenly spaced around the armature. When a current passes through the armature windings, a magnetic field is created around them. This magnetic field interacts with the stator’s magnetic field, resulting in the generation of a torque that drives the rotor’s rotation. The armature is a critical component that facilitates the conversion of electrical energy into mechanical energy.

4. Commutator:

The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other. The commutator plays a vital role in the DC motor’s operation by providing the necessary electrical connections to the armature windings. As the rotor spins, the brushes make physical contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Brushes:

The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings. The brushes supply the current to the armature windings through the commutator, allowing for the creation of the magnetic field necessary for motor operation. The brushes need to maintain proper contact with the commutator to ensure efficient electrical transmission and reliable motor performance.

6. Housing or Frame:

The housing or frame of the DC motor encloses and supports all the internal components. It provides structural integrity, protects the motor from external elements, and helps dissipate heat generated during operation. The housing or frame also serves as a mounting point for the motor, allowing it to be securely installed in various applications.

By understanding the main components of a DC motor and their contributions, one can gain insights into how each part works together harmoniously to achieve the desired motor functionality.

dc motor

What role does commutation play in the operation of a DC motor?

In the operation of a DC (Direct Current) motor, commutation plays a crucial role in ensuring the continuous rotation of the motor and the conversion of electrical energy into mechanical motion. It is the process by which the direction of the current in the armature winding is periodically reversed to maintain a constant torque and facilitate the rotation of the motor. Here’s a detailed explanation of the role of commutation in the operation of a DC motor:

Commutation is necessary in a DC motor because the magnetic field generated by the armature winding needs to be constantly aligned with the stator’s magnetic field for efficient torque production. The stator of a DC motor typically consists of permanent magnets or electromagnets that create a fixed magnetic field. The armature winding, located on the rotor, produces a magnetic field that interacts with the stator’s field to generate torque.

The commutation process is achieved through the use of a commutator and brushes. The commutator is a cylindrical ring with multiple segments, while the brushes are conductive contacts that make physical contact with the commutator segments. The armature winding is connected to the commutator, and as the rotor spins, the brushes maintain contact with different segments.

As the rotor rotates, the commutator and brushes ensure that the direction of the current in the armature winding is reversed at specific intervals. This reversal of current flow is necessary to maintain a consistent torque in the same rotational direction. Without commutation, the torque generated by the motor would fluctuate in both magnitude and direction, leading to instability and erratic motor behavior.

The commutation process involves two stages: mechanical commutation and electrical commutation.

1. Mechanical Commutation: As the rotor rotates, the brushes make contact with different segments of the commutator. The segments are insulated from each other to prevent short circuits. When the brushes move from one segment to another, the current flowing through the armature winding is switched to a different coil or set of coils. This mechanical switching ensures that the magnetic fields produced by the winding are properly aligned with the stator’s field, resulting in continuous torque production.

2. Electrical Commutation: The reversal of current in the armature winding is achieved through electrical commutation. When the brushes make contact with a new commutator segment, the current flow in the winding is redirected to maintain the desired torque direction. The timing and sequence of the current reversal are critical to ensure smooth and efficient motor operation.

The commutation process in a DC motor is a dynamic and continuous operation. It allows for the conversion of electrical energy into mechanical motion by providing a consistent torque output. The efficiency and performance of the motor are greatly influenced by the quality and effectiveness of the commutation process.

In summary, commutation plays a vital role in the operation of a DC motor by ensuring the continuous rotation of the motor and the production of consistent torque. It involves the mechanical and electrical switching of the current direction in the armature winding, facilitated by the commutator and brushes.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China manufacturer CHINAMFG K00-01 4nm 120W 100rpm 220V DC Geared Motor   vacuum pump design		China manufacturer CHINAMFG K00-01 4nm 120W 100rpm 220V DC Geared Motor   vacuum pump design
editor by CX 2024-04-19

China manufacturer RoHS Certification and Gear Motor Type Linear Actuator Wheelchair Motor DC 12V 24V vacuum pump electric

Product Description

SLA08 High load linear actuator

 

Product introduction

Stainless steel material, close structure design, DC motor gear reducer, built-in micro switch, with overheating protection, can realize automatic stop after travel; Travel can be customized, easy to install, easy to operate; Can replace hydraulic pressure, air pressure and other traditional mechanical push-pull products, green environmental protection; Widely used in aircraft, ships, luxury car seat back lift, massage chair massage table fire equipment medical equipment furniture and other products.

Product Parameters

• Operating temperature -26°C to +65°C

• Protection level IP65
•12, 24, 36, 48VDC
• Built-in micro switch
• Powder metallurgy gear
• 1K,5K,10K potentiometers and built-in Hall are available
• Stroke range: 50mm~1000mm
• Speed range: 5mm/s~160mm/s
• Maximum thrust 10000N
• Operating frequency 20%(high speed operating frequency 10%)
• Maximum self-locking force 12000N
• Maximum working life of 50,000 times

 

Product drawing

 

                                                                           L1(minimum mounting distance) =250mm+ stroke

Stroke(mm) 50 100 300 500 700
L1(minimum mounting distance) 300 350 550 750 1050
Weight(kg) 4.7 5.5 7.1 8.7 10.6

Product speed and load

 

 

Other products

 

 

Customer field visit

 

Packing picture

 

Factory picture

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, TUV
IP Rating: IP54/IP65
Limit Switch: Built-in
Voltage: 12V 24V 36V 48V
Standard Stroke: 20mm~1000mm
Max Thrust: 10000N
Samples:
US$ 104.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

What is a DC motor, and how does it differ from other types of electric motors?

A DC (Direct Current) motor is an electric motor that converts electrical energy into mechanical motion. It operates based on the principle of electromagnetic induction and the interaction between current-carrying conductors and magnetic fields. DC motors are widely used in various applications due to their simplicity, controllability, and versatility. Here’s a detailed explanation of what a DC motor is and how it differs from other types of electric motors:

1. Basic Operation:

In a DC motor, electrical energy is supplied to the motor’s armature through a DC power source, typically a battery or a rectified power supply. The armature consists of multiple coils or windings that are evenly spaced around the motor’s rotor. The rotor is a cylindrical core with a shaft that rotates when the motor is energized. When current flows through the armature windings, it creates a magnetic field that interacts with the fixed magnetic field produced by the motor’s stator. This interaction generates a torque, causing the rotor to rotate.

2. Commutation:

DC motors employ a commutator and brushes for the conversion of electrical energy and the rotation of the rotor. The commutator consists of a segmented cylindrical ring attached to the rotor shaft, and the brushes are stationary conductive contacts that make contact with the commutator segments. As the rotor spins, the brushes maintain contact with the commutator segments, periodically reversing the direction of the current flow in the armature windings. This reversal of current flow in the armature windings ensures continuous rotation of the rotor in the same direction.

3. Types of DC Motors:

DC motors can be classified into different types based on their construction and the method of field excitation. The two main types are:

  • Brushed DC Motors: Brushed DC motors have a mechanical commutator and brushes to switch the current direction in the armature windings. These motors are relatively simple, cost-effective, and offer good torque characteristics. However, the commutator and brushes require regular maintenance and can generate electrical noise and brush wear debris.
  • Brushless DC Motors (BLDC): Brushless DC motors, also known as electronically commutated motors (ECMs), use electronic circuits and sensors to control the current flow in the motor windings. They eliminate the need for brushes and commutators, resulting in reduced maintenance and improved reliability. BLDC motors offer higher efficiency, smoother operation, and better speed control compared to brushed DC motors.

4. Speed Control:

DC motors provide excellent speed control capabilities. By adjusting the voltage applied to the motor, the speed of the DC motor can be regulated. Lowering the voltage reduces the motor’s speed, while increasing the voltage increases the speed. This feature makes DC motors suitable for applications that require precise speed control, such as robotics, conveyor systems, and electric vehicles.

5. Advantages and Disadvantages:

DC motors have several advantages, including:

  • Simple construction and easy maintenance (for brushed DC motors).
  • High starting torque.
  • Precise speed control.
  • Good controllability over a wide range of loads.

However, DC motors also have some limitations, such as:

  • Brushed DC motors require periodic maintenance and have limited brush life.
  • Brushed DC motors can generate electrical noise.
  • Brushless DC motors are often more expensive compared to brushed DC motors.

6. Differences from Other Electric Motors:

DC motors differ from other types of electric motors, such as AC (Alternating Current) motors, in several ways:

  • Power Source: DC motors require a DC power source, while AC motors operate from an AC power supply.
  • Speed Control: DC motors offer precise speed control by adjusting the applied voltage, whereas AC motors typically rely on frequency control for speed regulation.
  • Construction: DC motors use a commutator and brushes (in brushed DC motors) or electronic commutation (in brushless DC motors), while AC motors do not require commutation.
  • Starting Torque: DC motors typically provide higher starting torque compared to AC motors.

Overall, DC motors are versatile and widely used in various applications due to their controllability, speed regulation capabilities, and simplicity. The advancements inpower electronics and motor control technologies have further enhanced the performance and efficiency of DC motors, making them a popular choice in many industries.

dc motor

Can you explain the concept of armature winding in a DC motor?

In a DC (Direct Current) motor, the armature winding is a crucial component that plays a significant role in the motor’s operation. It is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. Here’s a detailed explanation of the concept of armature winding in a DC motor:

The armature winding is a coil or set of coils made of insulated wire that is wound around the armature core, which is typically a laminated iron core. The armature winding is located on the rotor of the motor and is connected to the commutator. It carries the armature current, which is the current that flows through the winding to create the magnetic field. The armature winding is usually made of copper wire due to its excellent electrical conductivity.

When a current passes through the armature winding, it generates a magnetic field around the winding according to Ampere’s circuital law. The direction of the magnetic field is determined by the right-hand rule, where the thumb represents the direction of the current flow, and the curled fingers indicate the direction of the magnetic field.

The interaction between the magnetic field produced by the armature winding and the magnetic field produced by the stator’s permanent magnets or electromagnets creates a mechanical force, known as torque. This torque causes the rotor to rotate, converting electrical energy into mechanical motion.

The armature winding is designed in such a way that it produces a multipole magnetic field. The number of poles in the winding corresponds to the number of poles in the stator’s magnetic field. This ensures that the magnetic fields of the armature and stator are properly aligned for efficient torque generation.

The armature winding is connected to the commutator, which is a cylindrical ring with multiple segments that are insulated from each other. As the rotor spins, the brushes make physical contact with different segments of the commutator, effectively reversing the direction of the current in the armature winding. This reversal of current flow ensures that the torque generated in the armature winding is always in the same direction, enabling continuous rotation of the rotor.

The design and configuration of the armature winding, including the number of turns, wire gauge, and connection scheme, can influence the motor’s performance characteristics, such as torque, speed, and efficiency. Optimal winding design is crucial for achieving the desired motor performance in various applications.

In summary, the armature winding in a DC motor is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. It is a critical component that facilitates the conversion of electrical energy into mechanical motion.

dc motor

What are the environmental implications of using DC motors, particularly in green technologies?

DC (Direct Current) motors offer several environmental benefits when used in green technologies. Their characteristics and operational advantages contribute to reducing environmental impact compared to other motor types. Here’s a detailed explanation of the environmental implications of using DC motors, particularly in green technologies:

1. Energy Efficiency:

DC motors are known for their high energy efficiency. Compared to AC (Alternating Current) motors, DC motors generally have lower energy losses and can convert a larger proportion of electrical input power into mechanical output power. This increased efficiency results in reduced energy consumption, leading to lower greenhouse gas emissions and decreased reliance on fossil fuels for electricity generation.

2. Renewable Energy Integration:

DC motors are well-suited for integration with renewable energy sources. Many green technologies, such as solar photovoltaic systems and wind turbines, produce DC power. By utilizing DC motors directly in these systems, the need for power conversion from DC to AC can be minimized, reducing energy losses associated with conversion processes. This integration improves the overall system efficiency and contributes to a more sustainable energy infrastructure.

3. Battery-Powered Applications:

DC motors are commonly used in battery-powered applications, such as electric vehicles and portable devices. The efficiency of DC motors ensures optimal utilization of the limited energy stored in batteries, resulting in extended battery life and reduced energy waste. By utilizing DC motors in these applications, the environmental impact of fossil fuel consumption for transportation and energy storage is reduced.

4. Reduced Emissions:

DC motors, especially brushless DC motors, produce fewer emissions compared to internal combustion engines or motors that rely on fossil fuels. By using DC motors in green technologies, such as electric vehicles or electrically powered equipment, the emission of greenhouse gases and air pollutants associated with traditional combustion engines is significantly reduced. This contributes to improved air quality and a reduction in overall carbon footprint.

5. Noise Reduction:

DC motors generally operate with lower noise levels compared to some other motor types. The absence of brushes in brushless DC motors and the smoother operation of DC motor designs contribute to reduced noise emissions. This is particularly beneficial in green technologies like electric vehicles or renewable energy systems, where quieter operation enhances user comfort and minimizes noise pollution in residential or urban areas.

6. Recycling and End-of-Life Considerations:

DC motors, like many electrical devices, can be recycled at the end of their operational life. The materials used in DC motors, such as copper, aluminum, and various magnets, can be recovered and reused, reducing the demand for new raw materials and minimizing waste. Proper recycling and disposal practices ensure that the environmental impact of DC motors is further mitigated.

The use of DC motors in green technologies offers several environmental benefits, including increased energy efficiency, integration with renewable energy sources, reduced emissions, noise reduction, and the potential for recycling and end-of-life considerations. These characteristics make DC motors a favorable choice for sustainable and environmentally conscious applications, contributing to the transition to a greener and more sustainable future.

China manufacturer RoHS Certification and Gear Motor Type Linear Actuator Wheelchair Motor DC 12V 24V   vacuum pump electricChina manufacturer RoHS Certification and Gear Motor Type Linear Actuator Wheelchair Motor DC 12V 24V   vacuum pump electric
editor by CX 2024-04-11

China manufacturer Excited Protection Type Brushless Motor DC Efficient Engine for Drones vacuum pump adapter

Product Description

Basic parameter
Motor size:Φ28.5mm*30.8mm Shaft core: titanium alloy
Coil wire: high temperature resistant copper Slot pole :12N14P
Output axis: 13.0mm*M5 Lead :20AWG*150MM
Magnet type: Tile Mounting hole: 4*M3*∅16
Winding mode: Single strand Stator diameter :22.0mm

Motor parameter
KV value:1800 Voltage support:(4-6S)    
unloaded(10V):0.9A Interphase internal resistance:66Ω  
Maximum power:809W Weight line:33.3g      
               
Load performance(1800KV)
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51363 20 23.96 2.505 11802 239.53 60.05 3.791
30 23.88 5.366 15645 442.33 128.25 3.278
40 23.82 8.139 17851 574.81 193.85 2.831
50 23.74 11.475 20323 776.38 272.45 2.708
60 23.63 15.059 22101 922.84 355.85 2.464
70 23.5 19.456 23566 1063.99 457.25 2.216
80 23.42 22.703 25803 1265.48 531.75 2.261
90 23.26 29.211 27765 1475.02 679.45 2.062
100 23.18 32.297 28653 1571.67 748.55 1.995
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51433 20 23.95 2.561 11306 201.31 61.45 3.145
30 23.88 5.339 15844 423.62 127.55 3.156
40 23.82 8.308 18581 597.22 197.95 2.819
50 23.73 11.349 20664 738.37 269.35 2.604
60 23.65 14.628 22484 883.6 346.05 2.426
70 23.49 20.157 23800 992.08 473.35 1.997
80 23.43 22.138 26047 1220.86 518.85 2.235
90 23.26 28.765 28199 1443.04 669.25 2.048
100 23.19 31.524 28915 1552.18 731.05 2.017
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51477 20 23.96 2.516 11571 237.03 60.35 3.734
30 23.88 5.482 14770 437.44 130.95 3.175
40 23.81 8.465 17884 605 201.65 2.851
50 23.73 11.709 20081 760.33 277.85 2.600
60 23.62 15.353 21788 898.84 362.75 2.355
70 23.51 19.148 23419 1015.24 450.15 2.146
80 23.39 23.691 25386 1265.43 554.35 2.169
90 23.22 30.273 27476 1482.3 703.05 2.003
100 23.14 33.768 27921 1576.84 781.45 1.917
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
HQS5 20 23.96 2.287 9571 169.47 54.85 3.088
30 23.88 5.519 14729 415.78 131.85 2.997
40 23.8 8.675 17271 589.03 206.55 2.710
50 23.71 12.372 19459 741.46 293.35 2.402
60 23.6 16.571 20987 883.19 378.25 2.219
60 23.51 19.05 22588 1571.68 447.95 2.184
80 23.35 25.252 24550 1248.16 589.65 2.011
90 23.18 31.956 26551 1443.41 740.85 1.851
100 23.11 35.048 26879 1556.17 809.85 1.826
               
Motor load @ 100% throttle operation, at an ambient temperature of 26 degrees Celsius, the above data is for reference only
               
Motor parameter
KV value:1900 Voltage support:(4-6S)    
unloaded(10V):1.2A Interphase internal resistance:67Ω  
Maximum power:848W Weight line:31.3g      
Load performance(1900KV)
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51363 20 23.93 3.22 12382 267 77.05 3.292
30 23.83 6.931 16308 490.09 165.25 2.819
40 23.75 10.582 19041 664.41 251.35 2.512
50 23.65 14.309 21119 826.31 338.45 2.320
60 23.53 17.771 22885 975.8 418.25 2.216
70 23.44 21.343 24191 1101.67 500.35 2.092
80 23.35 25.316 26152 1254.26 591.25 2.016
90 23.19 31.284 28127 1454.22 725.55 1.904
100 23.12 34.158 28676 1546.08 789.65 1.860
 
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51433 20 23.93 3.182 12633 251.51 76.15 3.138
30 23.84 6.828 16716 462.92 162.85 2.701
40 23.76 10.461 19264 638.92 248.55 2.442
50 23.66 13.942 21636 784.57 329.85 2.260
60 23.54 17.477 23453 923.02 411.45 2.132
70 23.46 20.629 24776 1049.47 484.05 2.060
80 23.37 24.59 26580 1232.87 574.65 2.039
90 23.19 31.155 28296 1468.12 722.65 1.930
100 23.12 34.454 28808 1563.33 796.45 1.865
 
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51477 20 23.92 3.24 12199 266.11 77.55 3.261
30 23.83 6.973 16231 482.75 166.25 2.759
40 23.75 10.649 18867 658.88 252.95 2.475
50 23.64 14.54 20850 827.28 343.75 2.287
60 23.52 18.017 22482 966.54 423.85 2.167
70 23.44 21.676 23867 1098.61 508.05 2.055
80 23.32 26.127 25460 1248.45 609.45 1.947
90 23.16 32.3 27368 1445.94 748.25 1.836
100 23.08 35.807 27609 1550.89 826.35 1.783
 
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
HQS5 20 23.93 3.316 11411 238.79 79.35 2.867
30 23.83 7.141 15512 466.63 170.25 2.605
40 23.73 11.006 17805 653.22 261.25 2.376
50 23.63 14.949 19974 802.03 353.25 2.157
60 23.5 18.867 21553 947.97 443.45 2.031
60 23.41 22.644 22883 1078.21 530.25 1.932
80 23.29 27.775 24437 1238.61 646.75 1.819
90 23.12 34.258 26571 1466.09 791.95 1.758
100 23.05 36.907 26772 1513.63 848.45 1.695
 
Motor load @ 100% throttle operation, at an ambient temperature of 26 degrees Celsius, the above data is for reference only
               
Motor parameter
KV value:2550 Voltage support:(3-4S)    
unloaded(10V):1.7A Interphase internal resistance:66Ω  
Maximum power:587W Weight line:31.3g      
Load performance(2550KV)
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51363 20 15.94 3.515 1 0571 199.83 56.05 3.389
30 15.85 7.428 14390 368.48 117.75 2.974
40 15.76 11.456 16844 504.47 180.55 2.655
50 15.65 15.419 18638 639.53 241.45 2.517
60 15.57 19.125 20332 749.27 297.75 2.391
70 15.47 22.712 21500 857.51 351.45 2.318
80 15.39 26.198 22902 970.73 403.25 2.288
90 15.23 32.11 24938 1131.39 489.15 2.197
100 15.11 36.221 25204 1239.61 547.15 2.153
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51433 20 15.95 3.438 9911 152.22 54.85 2.689
30 15.85 7.321 14727 349.2 116.15 2.858
40 15.76 11.197 17074 484.18 176.55 2.607
50 15.67 15.087 18991 604.59 236.45 2.429
60 15.58 18.799 2571 719.15 292.95 2.332
70 15.49 22.2 21780 820.51 343.95 2.267
80 15.4 25.826 23015 936.06 397.75 2.236
90 15.23 32.006 24905 1095.03 487.65 2.134
100 15.12 35.541 25452 1194.65 537.45 2.112
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
51477 20 15.95 3.601 9937 164.22 57.45 2.740
30 15.85 7.454 14166 361.82 118.15 2.909
40 15.75 11.561 16516 504.7 182.15 2.632
50 15.66 15.537 18353 626.33 243.25 2.446
60 15.56 19.425 19903 737.89 302.25 2.320
70 15.47 23.176 21083 845.25 358.45 2.240
80 15.37 27.105 22438 960.57 416.65 2.191
90 15.2 32.946 24472 1103.59 500.85 2.094
100 15.08 37.03 24626 1221.24 558.65 2.077
               
paddle Throttle
(%)
Voltage(V) Curren
(A)
Speed
(rpm)
pulling force(g) Power(W) force effect
(g/w)
HQS5 20 15.94 3.552 10155 185.4 56.65 3.110
30 15.84 7.558 13525 344.66 119.75 2.734
40 15.75 11.707 15835 477.86 184.45 2.461
50 15.64 16.571 17621 599.14 250.75 2.271
60 15.55 20.059 19178 715.11 311.85 2.178
60 15.44 24.082 25715 818.6 371.95 2.091
80 15.33 28.623 21603 943.25 438.85 2.043
90 15.13 35.291 23216 1123.54 533.85 2.000
100 15.04 39.067 23671 1190.27 587.55 1.925
 
Motor load @ 100% throttle operation, at an ambient temperature of 26 degrees Celsius, the above data is for reference only

Common problems:
Q: Who are we?
A: We are a specialized manufacturer of drone motors
Q: Can you give me a sample order for the drone motor?
Answer: Yes, the minimum order quantity is low, you can provide 1 sample for testing, but you are responsible for the transportation cost.
Q. What about wait times?
A: Samples take 7-10 days.
Q: How do you ship the goods? How long will it take to get there?
A: We usually ship by air. It usually takes 7-15 days to arrive. Please contact us if you need another mode of transportation before shipping.
Q: Can you support oem and odm?
A: We can provide you with OEM/ODM services.
Q: What is the lead time of the sample?
A: Usually 1-3 weeks.
Q: What is the lead time for mass production?
A: Usually 1 month. It depends on the quantity of your order or other special circumstances.
Q: What are your payment terms?
A: T/T, Western Union and other payment methods are available. Please contact us with the payment method you require before ordering. Payment terms: 30%-50% deposit, balance paid before delivery.
Q: Can my logo be printed on the product?
A. Yes. Please inform and authorize us officially before we produce, and confirm the design according to the sample.
Q: Can I visit your factory before ordering?
A: Yes, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control
Casing Protection: Protection Type
Number of Poles: 14
Samples:
US$ 17/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

Can DC motors be used in renewable energy systems, such as wind turbines or solar tracking systems?

Yes, DC (Direct Current) motors can be effectively used in various renewable energy systems, including wind turbines and solar tracking systems. The unique characteristics and advantages of DC motors make them well-suited for these applications. Here’s a detailed explanation of how DC motors can be utilized in renewable energy systems:

1. Wind Turbines:

DC motors can be employed in wind turbines to convert the mechanical energy of the wind into electrical energy. There are two common configurations:

a. Direct Drive Wind Turbines:

In direct drive wind turbines, the rotor of the turbine is directly connected to a DC generator. The rotor’s rotational motion is transmitted directly to the generator, which produces DC electrical power. DC motors can be used as DC generators in this configuration. The advantage of using DC motors/generators is their simplicity, reliability, and ability to operate efficiently at variable speeds, which is beneficial in varying wind conditions.

b. Hybrid Wind Turbines:

Hybrid wind turbines combine both aerodynamic and electrical conversion systems. In this configuration, DC motors can be utilized for the pitch control mechanism and yaw control system. The pitch control mechanism adjusts the angle of the turbine blades to optimize performance, while the yaw control system enables the turbine to align itself with the wind direction. DC motors provide precise control and responsiveness required for these functions.

2. Solar Tracking Systems:

DC motors are commonly employed in solar tracking systems to maximize the efficiency of solar panels by optimizing their orientation towards the sun. There are two main types of solar tracking systems:

a. Single-Axis Solar Tracking Systems:

Single-axis solar tracking systems adjust the inclination of solar panels along a single axis (typically the east-west axis) to track the movement of the sun throughout the day. DC motors can be used to drive the rotation mechanism that adjusts the panel’s tilt angle. By continuously adjusting the panel’s position to face the sun directly, the solar energy harvested can be significantly increased, resulting in higher energy output compared to fixed solar panel installations.

b. Dual-Axis Solar Tracking Systems:

Dual-axis solar tracking systems adjust the inclination of solar panels along both the east-west and north-south axes to track the sun’s movement throughout the day and throughout the year. DC motors are utilized in the rotation mechanisms for both axes. This type of solar tracking system provides the highest possible energy yield by keeping the solar panels perpendicular to the sun’s rays at all times, maximizing the exposure to sunlight.

DC motors are preferred in renewable energy systems due to their advantages, including:

  • Efficiency at Variable Speeds: DC motors can operate efficiently at varying speeds, making them suitable for applications with fluctuating wind speeds or changing solar angles.
  • Control and Precision: DC motors offer precise control and responsiveness, allowing for accurate tracking and adjustment in wind turbines and solar tracking systems.
  • Reliability: DC motors are known for their reliability, with fewer moving parts compared to other motor types, reducing the risk of failure in remote or harsh environments.
  • Compatibility with Energy Storage Systems: DC motors can easily be integrated with energy storage systems, such as batteries or supercapacitors, to store excess electrical energy generated by wind turbines or solar panels.

In conclusion, DC motors can be effectively utilized in renewable energy systems such as wind turbines and solar tracking systems. Their efficiency, control capabilities, reliability, and compatibility with energy storage systems make them a suitable choice for these applications, contributing to the advancement of sustainable energy generation.

dc motor

Where can individuals find reliable resources for learning more about DC motors and their applications?

Individuals seeking reliable resources to learn more about DC (Direct Current) motors and their applications can explore various sources that provide comprehensive and accurate information. Here’s a detailed explanation of where individuals can find reliable resources for learning about DC motors:

1. Manufacturer Websites:

Many DC motor manufacturers have dedicated sections on their websites that provide detailed information about their products, including specifications, application notes, technical guides, and whitepapers. These resources offer valuable insights into the design, operation, and application considerations of DC motors. Examples of reputable DC motor manufacturers include Baldor, Maxon Motor, and Faulhaber.

2. Industry Associations and Organizations:

Industry associations and organizations related to electrical engineering, automation, and motor technology can be excellent sources of reliable information. Examples include the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). These associations often provide access to technical publications, research papers, conferences, and educational resources related to DC motors and their applications.

3. Technical Books and Publications:

Technical books and publications authored by experts in the field of electrical engineering and motor technology can provide in-depth knowledge about DC motors. Books such as “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and “Practical Electric Motor Handbook” by Irving Gottlieb are widely regarded as reliable resources for learning about DC motors and their applications.

4. Online Educational Platforms:

Online educational platforms offer a wealth of resources for learning about DC motors. Websites like Coursera, Udemy, and Khan Academy provide online courses, tutorials, and video lectures on electrical engineering, motor theory, and applications. These platforms often have courses specifically dedicated to DC motors, covering topics such as motor principles, control techniques, and practical applications.

5. Research Papers and Scientific Journals:

Research papers published in scientific journals and conference proceedings can provide detailed insights into the latest advancements and research findings related to DC motors. Platforms like IEEE Xplore, ScienceDirect, and Google Scholar can be used to search for scholarly articles on DC motors. These papers are authored by researchers and experts in the field and provide reliable and up-to-date information on various aspects of DC motor technology.

6. Online Forums and Communities:

Online forums and communities focused on electrical engineering, motor technology, and DIY projects can be valuable resources for learning about DC motors. Platforms like Reddit, Stack Exchange (Electrical Engineering section), and specialized motor forums provide opportunities to ask questions, engage in discussions, and learn from experienced individuals in the field. However, it’s important to verify information obtained from online forums as they may contain a mix of opinions and varying levels of expertise.

When accessing these resources, it’s essential to critically evaluate the information and cross-reference it with multiple sources to ensure accuracy and reliability. By utilizing a combination of manufacturer websites, industry associations, technical books, online educational platforms, research papers, and online communities, individuals can gain a comprehensive understanding of DC motors and their applications.

China manufacturer Excited Protection Type Brushless Motor DC Efficient Engine for Drones   vacuum pump adapter	China manufacturer Excited Protection Type Brushless Motor DC Efficient Engine for Drones   vacuum pump adapter
editor by CX 2024-04-02

China manufacturer CHINAMFG FF-M10va 5V 18000 Rpm 0.2W DC Motor for Card Reader vacuum pump oil

Product Description

Product Parameters

Item

Gear motor

OEM & ODM

Accepted

MOQ

1000 units

Capacity

200,000 units/month

Package

Carton

Place of Origin

HangZhou/HangZhou, ZheJiang , China

Delivery Date

Depending on the quantity, please ask the salesman.

Payment Terms

30% advance, 70% balance

Port of Shipment

HangZhou / Hong Kong

Detailed Photos

1. What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6-80 mm; automotive motors and vibration motors are our strength area too; we also provide brushless motors.

2. What’s the lead time for samples or mass production?
Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.

3. Could you mind sending the quotation for this motor?
For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.

4. Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?
We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5. Are you motors certificated with UL, CB Tüv, CE?
All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

 

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 3
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

What role does commutation play in the operation of a DC motor?

In the operation of a DC (Direct Current) motor, commutation plays a crucial role in ensuring the continuous rotation of the motor and the conversion of electrical energy into mechanical motion. It is the process by which the direction of the current in the armature winding is periodically reversed to maintain a constant torque and facilitate the rotation of the motor. Here’s a detailed explanation of the role of commutation in the operation of a DC motor:

Commutation is necessary in a DC motor because the magnetic field generated by the armature winding needs to be constantly aligned with the stator’s magnetic field for efficient torque production. The stator of a DC motor typically consists of permanent magnets or electromagnets that create a fixed magnetic field. The armature winding, located on the rotor, produces a magnetic field that interacts with the stator’s field to generate torque.

The commutation process is achieved through the use of a commutator and brushes. The commutator is a cylindrical ring with multiple segments, while the brushes are conductive contacts that make physical contact with the commutator segments. The armature winding is connected to the commutator, and as the rotor spins, the brushes maintain contact with different segments.

As the rotor rotates, the commutator and brushes ensure that the direction of the current in the armature winding is reversed at specific intervals. This reversal of current flow is necessary to maintain a consistent torque in the same rotational direction. Without commutation, the torque generated by the motor would fluctuate in both magnitude and direction, leading to instability and erratic motor behavior.

The commutation process involves two stages: mechanical commutation and electrical commutation.

1. Mechanical Commutation: As the rotor rotates, the brushes make contact with different segments of the commutator. The segments are insulated from each other to prevent short circuits. When the brushes move from one segment to another, the current flowing through the armature winding is switched to a different coil or set of coils. This mechanical switching ensures that the magnetic fields produced by the winding are properly aligned with the stator’s field, resulting in continuous torque production.

2. Electrical Commutation: The reversal of current in the armature winding is achieved through electrical commutation. When the brushes make contact with a new commutator segment, the current flow in the winding is redirected to maintain the desired torque direction. The timing and sequence of the current reversal are critical to ensure smooth and efficient motor operation.

The commutation process in a DC motor is a dynamic and continuous operation. It allows for the conversion of electrical energy into mechanical motion by providing a consistent torque output. The efficiency and performance of the motor are greatly influenced by the quality and effectiveness of the commutation process.

In summary, commutation plays a vital role in the operation of a DC motor by ensuring the continuous rotation of the motor and the production of consistent torque. It involves the mechanical and electrical switching of the current direction in the armature winding, facilitated by the commutator and brushes.

dc motor

Are there safety considerations or maintenance practices associated with DC motors?

Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:

Safety Considerations:

Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.

Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.

Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.

Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.

Maintenance Practices:

Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.

Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.

Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.

Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.

Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.

Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.

By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.

China manufacturer CHINAMFG FF-M10va 5V 18000 Rpm 0.2W DC Motor for Card Reader   vacuum pump oil	China manufacturer CHINAMFG FF-M10va 5V 18000 Rpm 0.2W DC Motor for Card Reader   vacuum pump oil
editor by CX 2023-12-06

China Professional Manufacturer 52mm DC Brushed Gear Motor with Gearbox vacuum pump diy

Product Description

manufacturer 52mm DC Brushed Gear Motor with gearbox
Please kindly let us know
1) what is your requirement to volt?
2) what is your requirement to rpm?
3) what is your requirement toTorque?
4) what is your requirement to Quantity.

Then we will provide solutions accordingly.

Product Category

China manufacturer gear motor price With Professional Technical Support

We always provide customers with distinctive products:cost-effective, lower
noise, higher efficiency and stability, longer life and higher strength.

Basic information
Product name PG52ZY52series,52mm diameter planet gear motor
Motor type carbon-brush commutator
Gear type Straight gearwheel,planet construction
Housing material Steel
Geartrain material Steel and Powdered Metal,POM optional
Bearing at output shaft Sleeve bearing
Lubricant Grease for high-low temperature, -62—+204 degree
Backlash at no-load <1°,MIN0.3°
OEM & ODM Service Available 
Certificate CE,ROHS,ISO/TS16949

 

An exact model of gearbox and motor combination
Product seires PG52ZY52 series
An exact Model NO. PG52ZY52 24 6000-198K
Motor Voltage(VDC) 24
Motor no load speed(rpm) 6000
Gearbox reduction ratio 198K
Gearmotor no load current(A) <0.039
Gearmotor no load speed(rpm) 29+/-10%
Gearmotor rated load torque(kgf.cm) 6.3
Gearmotor rated current(A) <0.194
Gearmotor rated load speed(rpm) 24+/-10%
Noise (DB) <55DB 
Lifetime 1000+ hours (varies by application)
Rotation CW/CCW reversible

Packing&Xihu (West Lake) Dis.

Company Information

FAQ
 

Q: Are you a trading company or a manufacturer?
A: We are a manufacturer.
Q: Can you make a motor with custom specifications?
A: Yes, actually that is what we do most of the time.
 Q: What is the MOQ (minimum order quantity)?
A: 1 pc for sample order, and 100pcs for bulk order.
Q: Do you have motors in stock?
A: No, we don’t. All motors are made with orders.
Q: How to pay you?
Paypal, Western Union, Money Gram, T/T, L/C payment are acceptable.
Q: What do you need to know if I need a recommendation on motor?
A: Normally we need to know dimensions, rated voltage, speed at load/no load, torque at load/stall. i.e.
a motor with diameter 37mm, 12V, 100rpm and 2Kgf.cm at load.
Q: Can I ask you for help if I know nothing about motor?
A: Yes, our pleasure. We are nice people with big hearts.
Q: Can we type our brand on it?
A: Yes of course.
Q: Where is your loading port ?
A: HangZhou Port, ZheJiang Port, China.
Q: What is your production capacity?
A: About 4000 PCS per day.
Q: Can I visit your factory?
A: Yes,of course

CONTACT US

 

 

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Casing Protection: Closed Type
Number of Poles: 2
Structure and Working Principle: Brush
Certification: ISO9001, ISO/Ts16949/Ce/Rhos
Customization:
Available

|

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

Are there specific types of DC motors designed for different industries or applications?

Yes, there are specific types of DC (Direct Current) motors that are designed and optimized for various industries and applications. DC motors offer a wide range of performance characteristics, allowing them to be tailored to specific requirements. Here’s a detailed explanation of the types of DC motors designed for different industries or applications:

1. Brushed DC Motors:

Brushed DC motors are commonly used in applications that require simple and cost-effective motor solutions. They are suitable for applications with lower efficiency requirements and where maintenance considerations are manageable. Some common industries and applications that use brushed DC motors include:

  • Automotive: Power window mechanisms, windshield wipers, cooling fans, and seat adjustment systems.
  • Consumer Electronics: Household appliances, toys, power tools, and personal care devices.
  • Industrial Machinery: Conveyors, pumps, fans, and machine tools.

2. Brushless DC Motors:

Brushless DC motors are known for their higher efficiency, greater reliability, and precise control capabilities. They are widely used in industries and applications that demand higher performance and advanced control features. Some specific industries and applications that utilize brushless DC motors include:

  • Automotive: Electric power steering systems, electric vehicles, hybrid vehicles, and HVAC systems.
  • Aerospace and Defense: Actuators, robotics, unmanned aerial vehicles (UAVs), and missile systems.
  • Medical and Laboratory Equipment: Centrifuges, pumps, robotics, and diagnostic devices.
  • Industrial Automation: CNC machines, robotics, automated guided vehicles (AGVs), and precision motion control systems.
  • Renewable Energy: Wind turbine generators, solar tracking systems, and energy storage systems.

3. High-Torque DC Motors:

High-torque DC motors are designed to provide substantial torque output at low speeds. They are commonly used in applications that require heavy lifting or high starting torque. Industries and applications that often utilize high-torque DC motors include:

  • Material Handling: Cranes, hoists, winches, lifts, and elevators.
  • Construction and Mining: Excavators, bulldozers, drilling rigs, and conveyor systems.
  • Automotive: Electric vehicles, electric powertrains, and traction control systems.
  • Marine and Shipbuilding: Thrusters, winches, and anchor handling systems.

4. Low-Voltage DC Motors:

Low-voltage DC motors are designed to operate at lower voltages, typically below 24 volts. They are commonly used in battery-powered applications and systems where safety or specific voltage requirements exist. Some industries and applications that utilize low-voltage DC motors include:

  • Automotive: Automotive accessories, window actuators, and door locks.
  • Robotics and Hobbyist Projects: DIY robots, RC vehicles, and model trains.
  • Solar Power Systems: Solar tracking systems, solar panel actuators, and solar-powered water pumps.
  • Home Automation: Automated blinds, curtains, and smart home devices.

These are just a few examples of the types of DC motors designed for different industries and applications. The versatility and adaptability of DC motors make them suitable for a wide range of uses, and manufacturers often offer customized motor solutions to meet specific requirements.

dc motor

What are the environmental implications of using DC motors, particularly in green technologies?

DC (Direct Current) motors offer several environmental benefits when used in green technologies. Their characteristics and operational advantages contribute to reducing environmental impact compared to other motor types. Here’s a detailed explanation of the environmental implications of using DC motors, particularly in green technologies:

1. Energy Efficiency:

DC motors are known for their high energy efficiency. Compared to AC (Alternating Current) motors, DC motors generally have lower energy losses and can convert a larger proportion of electrical input power into mechanical output power. This increased efficiency results in reduced energy consumption, leading to lower greenhouse gas emissions and decreased reliance on fossil fuels for electricity generation.

2. Renewable Energy Integration:

DC motors are well-suited for integration with renewable energy sources. Many green technologies, such as solar photovoltaic systems and wind turbines, produce DC power. By utilizing DC motors directly in these systems, the need for power conversion from DC to AC can be minimized, reducing energy losses associated with conversion processes. This integration improves the overall system efficiency and contributes to a more sustainable energy infrastructure.

3. Battery-Powered Applications:

DC motors are commonly used in battery-powered applications, such as electric vehicles and portable devices. The efficiency of DC motors ensures optimal utilization of the limited energy stored in batteries, resulting in extended battery life and reduced energy waste. By utilizing DC motors in these applications, the environmental impact of fossil fuel consumption for transportation and energy storage is reduced.

4. Reduced Emissions:

DC motors, especially brushless DC motors, produce fewer emissions compared to internal combustion engines or motors that rely on fossil fuels. By using DC motors in green technologies, such as electric vehicles or electrically powered equipment, the emission of greenhouse gases and air pollutants associated with traditional combustion engines is significantly reduced. This contributes to improved air quality and a reduction in overall carbon footprint.

5. Noise Reduction:

DC motors generally operate with lower noise levels compared to some other motor types. The absence of brushes in brushless DC motors and the smoother operation of DC motor designs contribute to reduced noise emissions. This is particularly beneficial in green technologies like electric vehicles or renewable energy systems, where quieter operation enhances user comfort and minimizes noise pollution in residential or urban areas.

6. Recycling and End-of-Life Considerations:

DC motors, like many electrical devices, can be recycled at the end of their operational life. The materials used in DC motors, such as copper, aluminum, and various magnets, can be recovered and reused, reducing the demand for new raw materials and minimizing waste. Proper recycling and disposal practices ensure that the environmental impact of DC motors is further mitigated.

The use of DC motors in green technologies offers several environmental benefits, including increased energy efficiency, integration with renewable energy sources, reduced emissions, noise reduction, and the potential for recycling and end-of-life considerations. These characteristics make DC motors a favorable choice for sustainable and environmentally conscious applications, contributing to the transition to a greener and more sustainable future.

China Professional Manufacturer 52mm DC Brushed Gear Motor with Gearbox   vacuum pump diyChina Professional Manufacturer 52mm DC Brushed Gear Motor with Gearbox   vacuum pump diy
editor by CX 2023-11-18